

#### LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

Tait Environmental Management, Inc.

October 5, 2007

701 N. Park Center Drive Santa Ana, CA 92705 ATTN: Ms. Clara Boeru

SUBJECT: Boeing Realty Corp. Bldg C-6 Facility, Data Validation

Dear Ms. Boeru,

Enclosed are the final validation reports for the fractions listed below. These SDGs were received on September 20, 2007. Attachment 1 is a summary of the samples that were reviewed for each analysis.

#### **LDC Project # 17471:**

#### SDG#

#### Fraction

IQF0211, IQF0296, Volatiles, Wet Chemistry, Dissolved Gases IQF0673

The data validation was performed under Tier 1, Tier 2 and Tier 3 guidelines. The analyses were validated using the following documents, as applicable to each method:

- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998

Please feel free to contact us if you have any questions.

Sincerely,

Stella S. Cuenco

Project Manager/Senior Chemist

#### Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17471

Volatiles

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 4, 2007

LDC Report Date:

September 27, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 1

Laboratory:

**TestAmerica** 

Sample Delivery Group (SDG): IQF0211

Sample Identification

IRZMW001A\_WG060407\_0001

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance data were not reviewed for Tier 1.

#### III. Initial Calibration

Initial calibration data were not reviewed for Tier 1.

#### IV. Continuing Calibration

Continuing calibration data were not reviewed for Tier 1.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

Internal standards data were not reviewed for Tier 1.

#### XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

#### XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

#### XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

#### XIV. System Performance

Raw data were not reviewed for this SDG.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

#### XVII. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility Volatiles - Data Qualification Summary - SDG IQF0211

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQF0211

No Sample Data Qualified in this SDG

## Test/America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Sampled: 06/04/07

Santa Ana, CA 92705 Attention: Clara Boeru

Report Number: 1QF0211

Received: 06/04/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

|                                      |                  |               | MDL   | Reporting | Sample       | Dilution    | Date                 | Date                 | Data       |
|--------------------------------------|------------------|---------------|-------|-----------|--------------|-------------|----------------------|----------------------|------------|
| Analyte                              | Method           | Batch         | Limit | Limit     | Result       |             | Extracted            | Analyzed             | Qualifiers |
| Sample ID: IQF0211-01 (IRZMW001      | A_WG060407_0001  | - Water)      |       |           | Sample       | ed: 06/04/0 | 07                   |                      |            |
| Reporting Units: ug/l                |                  |               |       |           | 15000        | • • • •     | 0440440              | 06106107             |            |
| Trichloroethene                      | EPA 8260B        | 7F06006       | 26    | 100       | 17000        | 100         | 06/06/07             | 06/06/07             |            |
| Surrogate: 4-Bromofluorobenzene (80- |                  |               |       |           | 95 %         |             |                      |                      |            |
| Surrogate: Dibromofluoromethane (80- | 120%)            |               |       |           | 98 %<br>98 % |             |                      |                      |            |
| Surrogate: Toluene-d8 (80-120%)      |                  |               |       |           | 90 %         |             | ·•                   |                      |            |
| Sample ID: IQF0211-01RE1 (IRZMW      | /001A_WG060407_0 | 0001 - Water) |       |           | Sample       | ed: 06/04/0 | 07                   |                      |            |
| Reporting Units: ug/l                |                  |               |       | #0.0      | ) IP         | 50          | 0.6100107            | 06.000.07            |            |
| Acetone                              | EPA 8260B        | 7F09008       | 220   | 500       | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Benzene                              | EPA 8260B        | 7F09008       | 14    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Bromobenzene                         | EPA 8260B        | 7F09008       | 14    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Bromochloromethane                   | EPA 8260B        | 7F09008       | 16    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Bromodichloromethane                 | EPA 8260B        | 7F09008       | 15    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Bromoform                            | EPA 8260B        | 7F09008       | 20    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Bromomethane                         | EPA 8260B        | 7F09008       | 21    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| 2-Butanone (MEK)                     | EPA 8260B        | 7F09008       | 240   | 250       | ND           | 50          | 06/09/07             | 06/09/07             |            |
| n-Butylbenzene                       | EPA 8260B        | 7F09008       | 18    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| sec-Butylbenzene                     | EPA 8260B        | 7F09008       | 12    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| tert-Butylbenzene                    | EPA 8260B        | 7F09008       | 11    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Carbon Disulfide                     | EPA 8260B        | 7F09008       | 24    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Carbon tetrachloride                 | EPA 8260B        | 7F09008       | 14    | 25        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Chlorobenzene                        | EPA 8260B        | 7F09008       | 18    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Chloroethane                         | EPA 8260B        | 7F09008       | 20    | 100       | ND           | 50<br>50    | 06/09/07             | 06/09/07<br>06/09/07 | j          |
| Chloroform                           | EPA 8260B        | 7F09008       | 16    | 50        | 18           | 50          | 06/09/07             |                      | J          |
| Chloromethane                        | EPA 8260B        | 7F09008       | 20    | 100       | ND           | 50          | 06/09/07<br>06/09/07 | 06/09/07<br>06/09/07 |            |
| 2-Chlorotoluene                      | EPA 8260B        | 7F09008       | 14    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| 4-Chlorotoluene                      | EPA 8260B        | 7F09008       | 14    | 50        | ND           | 50          |                      |                      |            |
| 1,2-Dibromo-3-chloropropane          | EPA 8260B        | 7F09008       | 48    | 100       | ND<br>ND     | 50<br>50    | 06/09/07<br>06/09/07 | 06/09/07<br>06/09/07 |            |
| Dibromochloromethane                 | EPA 8260B        | 7F09008       | 14    | 50        |              | 50<br>50    | 06/09/07             | 06/09/07             |            |
| 1,2-Dibromoethane (EDB)              | EPA 8260B        | 7F09008       | 20    | 50        | ND<br>ND     |             | 06/09/07             | 06/09/07             |            |
| 1,4-Dichlorobenzene                  | EPA 8260B        | 7F09008       | 18    | 50        |              | 50          | 06/09/07             | 06/09/07             |            |
| 1,2-Dichlorobenzene                  | EPA 8260B        | 7F09008       | 16    | 50        | ND           | 50          |                      | 06/09/07             |            |
| 1,3-Dichlorobenzene                  | EPA 8260B        | 7F09008       | 18    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| Dichlorodifluoromethane              | EPA 8260B        | 7F09008       | 13    | 50        | ND           | 50          | 06/09/07             |                      |            |
| 1,2-Dichloroethane                   | EPA 8260B        | 7F09008       | 14    | 25        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| 1,1-Dichloroethane                   | EPA 8260B        | 7F09008       | 14    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| 1,1-Dichloroethene                   | EPA 8260B        | 7F09008       | 21    | 50        | 68           | 50          | 06/09/07             | 06/09/07             |            |
| cis-1,2-Dichloroethene               | EPA 8260B        | 7F09008       | 16    | 50        | 490          | 50          | 06/09/07             | 06/09/07             |            |
| trans-1,2-Dichloroethene             | EPA 8260B        | 7F09008       | 14    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| 1,2-Dichloropropane                  | EPA 8260B        | 7F09008       | 18    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| 2,2-Dichloropropane                  | EPA 8260B        | 7F09008       | 17    | 50        | ND           | 50          | 06/09/07             | 06/09/07             |            |
| cis-1,3-Dichloropropene              | EPA 8260B        | 7F09008       | 11    | 25        | ND           | 50          | 06/09/07             | 06/09/07             |            |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager 1100407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0211 <Page 2 of 42>

## Test/America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0211

Sampled: 06/04/07

Received: 06/04/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

|                                         |                |                 | MDL     | Reporting | Sample | Dilution   | Date      | Date     | Data       |
|-----------------------------------------|----------------|-----------------|---------|-----------|--------|------------|-----------|----------|------------|
| Analyte                                 | Method         | Batch           | Limit   | Limit     | Result | Factor     | Extracted | Analyzed | Qualifiers |
| Sample ID: IQF0211-01RE1 (IRZMW00       | 01A_WG060407_0 | 001 - Water)    | - cont. |           | Sample | d: 06/04/0 | 07        |          |            |
| Reporting Units: ug/l                   |                |                 |         |           |        |            |           |          |            |
| I,I-Dichloropropene                     | EPA 8260B      | <b>7</b> F09008 | 14      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| trans-1,3-Dichloropropene               | EPA 8260B      | 7F09008         | 16      | 25        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Ethylbenzene                            | EPA 8260B      | 7F09008         | 12      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Hexachlorobutadiene                     | EPA 8260B      | 7F09008         | 19      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 2-Hexanone                              | EPA 8260B      | 7F09008         | 130     | 300       | ND     | 50         | 06/09/07  | 06/09/07 |            |
| lodomethane                             | EPA 8260B      | 7F09008         | 50      | 100       | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Isopropylbenzene                        | EPA 8260B      | 7F09008         | 12      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| p-lsopropyltoluene                      | EPA 8260B      | 7F09008         | 14      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Methyl-tert-butyl Ether (MTBE)          | EPA 8260B      | 7F09008         | 16      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Methylene chloride                      | EPA 8260B      | 7F09008         | 48      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 4-Methyl-2-pentanone (MIBK)             | EPA 8260B      | 7F09008         | 180     | 250       | ND     | 50         | 06/09/07  | 06/09/07 |            |
| n-PropyIbenzene                         | EPA 8260B      | 7F09008         | 14      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Styrene                                 | EPA 8260B      | 7F09008         | 8.0     | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,1,1,2-Tetrachloroethane               | EPA 8260B      | 7F09008         | 14      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| I, I, 2, 2-Tetrachloroethane            | EPA 8260B      | 7F09008         | 12      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Tetrachloroethene                       | EPA 8260B      | 7F09008         | 16      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Tetrahydrofuran (THF)                   | EPA 8260B      | 7F09008         | 180     | 500       | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Toluene                                 | EPA 8260B      | 7F09008         | 18      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,2,3-Trichlorobenzene                  | EPA 8260B      | 7F09008         | 15      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,2,4-Trichlorobenzene                  | EPA 8260B      | 7F09008         | 24      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,1,2-Trichloroethane                   | EPA 8260B      | 7F09008         | 15      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,1,1-Trichloroethane                   | EPA 8260B      | 7F09008         | 15      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Trichlorofluoromethane                  | EPA 8260B      | 7F09008         | 17      | 100       | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,2,3-Trichloropropane                  | EPA 8260B      | <b>7</b> F09008 | 20      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,2,4-Trimethylbenzene                  | EPA 8260B      | 7F09008         | 12      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| 1,3,5-Trimethylbenzene                  | EPA 8260B      | 7F09008         | 13      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Vinyl acetate                           | EPA 8260B      | <b>7</b> F09008 | 50      | 300       | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Vinyl chloride                          | EPA 8260B      | <b>7</b> F09008 | 15      | 25        | 24     | 50         | 06/09/07  | 06/09/07 | J          |
| Xylenes, Total                          | EPA 8260B      | 7F09008         | 45      | 50        | ND     | 50         | 06/09/07  | 06/09/07 |            |
| Surrogate: 4-Bromofluorobenzene (80-120 | 0%)            |                 |         |           | 97 %   |            |           |          |            |
| Surrogate: Dibromofluoromethane (80-12  | 0%)            |                 |         |           | 105 %  |            |           |          |            |
| Surrogate: Toluene-d8 (80-120%)         |                |                 |         |           | 97 %   |            |           |          |            |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager ×100407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0211 <Page 3 of 42>

#### **VALIDATION COMPLETENESS WORKSHEET** LDC #: 17471A1 Tier 1 SDG #: IQF0211 Laboratory: Test America

|     | Date:     | 9/26/0        |
|-----|-----------|---------------|
|     | Page:_    | <u>/_of_/</u> |
|     | Reviewer: | <u></u>       |
| 2nd | Reviewer: | n             |

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                                |   | Comments                    |
|-------|------------------------------------------------|---|-----------------------------|
| l.    | Technical holding times                        | Δ | Sampling dates: 6/4/07      |
| H.    | GC/MS Instrument performance check             | N | , ,                         |
| 111.  | Initial calibration                            | N |                             |
| IV.   | Continuing calibration                         | N |                             |
| V.    | Blanks                                         | Δ |                             |
| VI.   | Surrogate spikes                               | Δ |                             |
| VII.  | Matrix spike/Matrix spike duplicates           | Δ | 1RZCMW003_WG060407_0001M5/P |
| VIII. | Laboratory control samples                     | A | Les                         |
| IX.   | Regional Quality Assurance and Quality Control | N |                             |
| X.    | Internal standards                             | Δ |                             |
| XI.   | Target compound identification                 | N |                             |
| XII.  | Compound quantitation/CRQLs                    | N |                             |
| XIII. | Tentatively identified compounds (TICs)        | N |                             |
| XIV.  | System performance                             | N |                             |
| XV.   | Overall assessment of data                     | 4 |                             |
| XVI.  | Field duplicates                               | N |                             |
| XVII. | Field blanks                                   | Ν |                             |

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

|     | vace                           |      |                    |    |    |  |
|-----|--------------------------------|------|--------------------|----|----|--|
| 1 2 | 7.5<br>IRZMW001A_WG060407_0001 | 11 / | 7506006            | 21 | 31 |  |
| 2   |                                | 127  | 7509006<br>7509008 | 22 | 32 |  |
| 3   |                                | 13   |                    | 23 | 33 |  |
| 4   |                                | 14   |                    | 24 | 34 |  |
| 5   |                                | 15   |                    | 25 | 35 |  |
| 6   |                                | 16   |                    | 26 | 36 |  |
| 7   |                                | 17   |                    | 27 | 37 |  |
| 8   |                                | 18   |                    | 28 | 38 |  |
| 9   |                                | 19   |                    | 29 | 39 |  |
| 10  |                                | 20   |                    | 30 | 40 |  |

# Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 5, 2007

LDC Report Date:

September 27, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 2

Laboratory:

**TestAmerica** 

Sample Delivery Group (SDG): IQF0296

Sample Identification

IRZMW004\_WG060507\_0001 IRZMW004\_WG060507\_0001MS IRZMW004\_WG060507\_0001MSD

#### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination  $(r^2)$  were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

| Date    | Compound   | RRF (Limits)  | Associated Samples                                                                             | Flag                                    | A or P |
|---------|------------|---------------|------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| 5/31/07 | 2-Butanone | 0.032 (≥0.05) | IRZMW004_WG060507_0001<br>IRZMW004_WG060507_0001MS<br>IRZMW004_WG060507_0001MSD<br>7F07029-BLK | J (all detects)<br>UJ (all non-detects) | A      |

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

| Date   | Compound   | RRF (Limits)  | Associated Samples                    | Flag                                    | A or P |
|--------|------------|---------------|---------------------------------------|-----------------------------------------|--------|
| 6/7/07 | 2-Butanone | 0.033 (≥0.05) | IRZMW004_WG060507_0001<br>7F07029-BLK | J (all detects)<br>UJ (all non-detects) | А      |

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

#### XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

#### XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

#### XIV. System Performance

Raw data were not reviewed for this SDG.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

#### XVII. Field Blanks

No field blanks were identified in this SDG.

#### Boeing Realty Corp., Bldg C-6 Facility Volatiles - Data Qualification Summary - SDG IQF0296

| SDG     | Sample                 | Compound   | Flag                                    | A or P | Reason                       |
|---------|------------------------|------------|-----------------------------------------|--------|------------------------------|
| IQF0296 | IRZMW004_WG060507_0001 | 2-Butanone | J (all detects)<br>UJ (all non-detects) | А      | Initial calibration (RRF)    |
| IQF0296 | IRZMW004_WG060507_0001 | 2-Butanone | J (all detects)<br>UJ (all non-detects) | А      | Continuing calibration (RRF) |

Boeing Realty Corp., Bldg C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQF0296

No Sample Data Qualified in this SDG



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive Santa Ana, CA 92705

Attention: Clara Boeru

Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0296

Sampled: 06/05/07

Received: 06/05/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

|                                                           |                   |                  | MDL   | Reporting | Sample | Dilution           | Date      | Date     | Data       |
|-----------------------------------------------------------|-------------------|------------------|-------|-----------|--------|--------------------|-----------|----------|------------|
| Analyte                                                   | Method            | Batch            | Limit | Limit     | Result | Factor             | Extracted | Analyzed | Qualifiers |
| Sample ID: IQF0296-01 (IRZMW004_V                         | WG060507_0001 - 1 | Water)           |       |           | Sample | <b>d: 0</b> 6/05/0 | 97        |          |            |
| Reporting Units: ug/l                                     |                   |                  |       |           |        |                    |           |          |            |
| cis-1,2-Dichloroethene                                    | EPA 8260B         | 7F07 <b>0</b> 07 | 6.4   | 20        | 450    | 20                 | 06/07/07  | 06/07/07 |            |
| Trichloroethene                                           | EPA 8260B         | 7F07007          | 5.2   | 20        | 4000   | 20                 | 06/07/07  | 06/07/07 |            |
| Surrogate: 4-Bromofluorobenzene (80-12                    | 20%)              |                  |       |           | 96 %   |                    |           |          |            |
| Surrogate: Dibromofluoromethane (80-1.                    | 20%)              |                  |       |           | 97%    |                    |           |          |            |
| Surrogate: Toluene-d8 (80-120%)                           |                   |                  |       |           | 98 %   |                    |           |          |            |
| Sample ID: 1QF0296-01RE1 (IRZMW0<br>Reporting Units: ug/l | 04_WG060507_00    | 01 - Water)      |       |           | Sample | d: 06/05/0         | <b>)7</b> |          |            |
| Acetone                                                   | EPA 8260B         | 7F07029          | 45    | 100       | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Benzene                                                   | EPA 8260B         | 7F07029          | 2.8   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Bromobenzene                                              | EPA 8260B         | 7F07029          | 2.7   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Bromochloromethane                                        | EPA 8260B         | 7F07029          | 3.2   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Bromodichloromethane                                      | EPA 8260B         | 7F07029          | 3.0   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Bromoform                                                 | EPA 8260B         | 7F07029          | 4.0   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Bromomethane                                              | EPA 8260B         | 7F07029          | 4.2   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 2-Butanone (MEK)                                          | EPA 8260B         | 7F07029          | 47    | 50        | ND Y   | <b>J</b> 10        | 06/07/07  | 06/08/07 |            |
| n-Butylbenzene                                            | EPA 8260B         | 7F07029          | 3.7   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| sec-Butylbenzene                                          | EPA 8260B         | 7F07029          | 2.5   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| tert-Butylbenzene                                         | EPA 8260B         | 7F07029          | 2.2   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Carbon Disulfide                                          | EPA 8260B         | 7F07029          | 4.8   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Carbon tetrachloride                                      | EPA 8260B         | 7F07029          | 2.8   | 5.0       | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Chlorobenzene                                             | EPA 8260B         | 7F07029          | 3.6   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Chloroethane                                              | EPA 8260B         | 7F07029          | 4.0   | 20        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Chloroform                                                | EPA 8260B         | 7F07029          | 3.3   | 10        | 100    | 10                 | 06/07/07  | 06/08/07 |            |
| Chloromethane                                             | EPA 8260B         | 7F07029          | 4.0   | 20        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 2-Chlorotoluene                                           | EPA 8260B         | 7F07029          | 2.8   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 4-Chlorotoluene                                           | EPA 8260B         | 7F07029          | 2.9   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,2-Dibromo-3-chloropropane                               | EPA 8260B         | 7F07029          | 9.7   | 20        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Dibromochloromethane                                      | EPA 8260B         | 7F07029          | 2.8   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,2-Dibromoethane (EDB)                                   | EPA 8260B         | 7F07029          | 4.0   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,4-Dichlorobenzene                                       | EPA 8260B         | 7F07029          | 3.7   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,2-Dichlorobenzene                                       | EPA 8260B         | 7F07029          | 3.2   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,3-Dichlorobenzene                                       | EPA 8260B         | 7F07029          | 3.5   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| Dichlorodifluoromethane                                   | EPA 8260B         | 7F07029          | 2.6   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,2-Dichloroethane                                        | EPA 8260B         | 7F07029          | 2.8   | 5.0       | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,1-Dichloroethane                                        | EPA 8260B         | 7F07029          | 2.7   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 1,1-Dichloroethene                                        | EPA 8260B         | 7F07029          | 4.2   | 10        | 55     | 10                 | 06/07/07  | 06/08/07 |            |
| trans-1,2-Dichloroethene                                  | EPA 8260B         | 7F07029          | 2.7   | 10        | 7.3    | 10                 | 06/07/07  | 06/08/07 | J          |
| 1,2-Dichloropropane                                       | EPA 8260B         | 7F07029          | 3.5   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| 2,2-Dichloropropane                                       | EPA 8260B         | 7F07029          | 3.4   | 10        | ND     | 10                 | 06/07/07  | 06/08/07 |            |
| cis-1,3-Dichloropropene                                   | EPA 8260B         | 7F07029          | 2.2   | 5.0       | ND     | 10                 | 06/07/07  | 06/08/07 |            |
|                                                           |                   |                  |       |           |        |                    |           |          |            |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager £100/17

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0296 <Page 2 of 54>

## Test/America

**ANALYTICAL TESTING CORPORATION** 

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive Santa Ana, CA 92705

Attention: Clara Boeru

Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0296

Sampled: 06/05/07

Received: 06/05/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

| Analyte                               | Method           | Batch         | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution   | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|---------------------------------------|------------------|---------------|--------------|--------------------|------------------|------------|-------------------|------------------|--------------------|
| •                                     | -                |               |              | Dillin             |                  |            |                   | Anaiyzcu         | Quantities         |
| Sample ID: IQF0296-01RE1 (IRZMW       | /004_WG060507_00 | 01 - Water) - | cont.        |                    | Sample           | ed: 06/05/ | 07                |                  |                    |
| Reporting Units: ug/l                 | ED4 00(0D        | #E0#0#0       | • •          | ••                 |                  | • •        | 0.610=10=         | 244210           |                    |
| 1,1-Dichloropropene                   | EPA 8260B        | 7F07029       | 2.8          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| trans-1,3-Dichloropropene             | EPA 8260B        | 7F07029       | 3.2          | 5.0                | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Ethylbenzene                          | EPA 8260B        | 7F07029       | 2.5          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Hexachlorobutadiene                   | EPA 8260B        | 7F07029       | 3.8          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 2-Hexanone                            | EPA 8260B        | 7F07029       | 26           | 60                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Iodomethane                           | EPA 8260B        | 7F07029       | 10           | 20                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Isopropylbenzene                      | EPA 8260B        | 7F07029       | 2.5          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| p-Isopropyltoluene                    | EPA 8260B        | 7F07029       | 2.8          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Methyl-tert-butyl Ether (MTBE)        | EPA 8260B        | 7F07029       | 3.2          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Methylene chloride                    | EPA 8260B        | 7F07029       | 9.5          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 4-Methyl-2-pentanone (MIBK)           | EPA 8260B        | 7F07029       | 35           | 50                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| n-Propylbenzene                       | EPA 8260B        | 7F07029       | 2.7          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Styrene                               | EPA 8260B        | 7F07029       | 1.6          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,1,1,2-Tetrachloroethane             | EPA 8260B        | 7F07029       | 2.7          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,1,2,2-Tetrachloroethane             | EPA 8260B        | 7F07029       | 2,4          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Tetrachloroethene                     | EPA 8260B        | 7F07029       | 3.2          | 10                 | 11               | 10         | 06/07/07          | 06/08/07         |                    |
| Tetrahydrofuran (THF)                 | EPA 8260B        | 7F07029       | 35           | 100                | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Toluene                               | EPA 8260B        | 7F07029       | 3.6          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,2,3-Trichlorobenzene                | EPA 8260B        | 7F07029       | 3.0          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,2,4-Trichlorobenzene                | EPA 8260B        | 7F07029       | 4.8          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,1,2-Trichloroethane                 | EPA 8260B        | 7F07029       | 3.0          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,1,1-Trichloroethane                 | EPA 8260B        | 7F07029       | 3.0          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Trichlorofluoromethane                | EPA 8260B        | 7F07029       | 3.4          | 20                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,2,3-Trichloropropane                | EPA 8260B        | 7F07029       | 4.0          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,2,4-Trimethylbenzene                | EPA 8260B        | 7F07029       | 2.3          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| 1,3,5-Trimethylbenzene                | EPA 8260B        | 7F07029       | 2.6          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Vinyl acetate                         | EPA 8260B        | 7F07029       | 10           | 60                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Vinyl chloride                        | EPA 8260B        | 7F07029       | 3.0          | 5.0                | 52               | 10         | 06/07/07          | 06/08/07         |                    |
| Xylenes, Total                        | EPA 8260B        | 7F07029       | 9.0          | 10                 | ND               | 10         | 06/07/07          | 06/08/07         |                    |
| Surrogate: 4-Bromofluorobenzene (80-1 |                  |               |              |                    | 94%              |            |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80-  | ·                |               |              |                    | 100 %            |            |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)       |                  |               |              |                    | 98 %             |            |                   |                  |                    |
| ,                                     |                  |               |              |                    |                  |            |                   |                  |                    |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager × 100407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0296 <Page 3 of 54>

| LDC #: 17471B1           | VALIDATION COMPLETENESS WORKSHEET | Date:                      |
|--------------------------|-----------------------------------|----------------------------|
| SDG #: IQF0296           | Tier 2                            | Page: <u>/</u> of <u>/</u> |
| Laboratory: Test America |                                   | Reviewer:                  |
|                          |                                   | 2nd Reviewer:              |

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|            | Validation Area                                |     | Comments               |
|------------|------------------------------------------------|-----|------------------------|
| <b>-</b> . | Technical holding times                        | A   | Sampling dates: 6/5/07 |
| 11.        | GC/MS Instrument performance check             | A   | , ,                    |
| III.       | Initial calibration                            | SIA | 1/0 psp, 12 20.990     |
| IV.        | Continuing calibration/ਿੰਡਪ                    | SW  | ,                      |
| V.         | Blanks                                         | A   |                        |
| VI.        | Surrogate spikes                               | A   |                        |
| VII.       | Matrix spike/Matrix spike duplicates           | Δ   |                        |
| VIII.      | Laboratory control samples                     | A   | 169                    |
| IX.        | Regional Quality Assurance and Quality Control | N   |                        |
| X.         | Internal standards                             | Δ   |                        |
| XI.        | Target compound identification                 | N   |                        |
| XII.       | Compound quantitation/CRQLs                    | N   |                        |
| XIII.      | Tentatively identified compounds (TICs)        | N   |                        |
| XIV.       | System performance                             | N   |                        |
| XV.        | Overall assessment of data                     | 4   | ·                      |
| XVI.       | Field duplicates                               | N   |                        |
| XVII.      | Field blanks                                   | N   |                        |

Note: A = Acceptable

N = Not provided/applicable

SW = See worksheet

ND = No compounds detected

R = Rinsate

D = Duplicate TB = Trip blank

FB = Field blank

EB = Equipment blank

#### Validated Samples:

|     | water                                 |      |          |    |        |  |
|-----|---------------------------------------|------|----------|----|--------|--|
| 12  | / ፡ ዼዹዼ , ጜ<br>IRZMW004_WG060507_0001 | 11 1 | 7 507007 | 21 | 31     |  |
| 2 / | IRZMW004_WG060507_0001MS              | 12   | 1807029  | 22 | <br>32 |  |
| 3 1 | IRZMW004_WG060507_0001MSD             | 13   |          | 23 | 33     |  |
| 4   |                                       | 14   |          | 24 | <br>34 |  |
| 5   |                                       | 15   |          | 25 | <br>35 |  |
| 6   |                                       | 16   |          | 26 | <br>36 |  |
| 7   |                                       | 17   |          | 27 | 37     |  |
| 8   |                                       | 18   |          | 28 | <br>38 |  |
| 9   |                                       | 19   |          | 29 | 39     |  |
| 10  |                                       | 20   |          | 30 | 40     |  |

# TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

| A. Chloromethane*            | U. 1,1,2-Trichloroethane        | OO. 2,2-Dichloropropane       | III. n-Butylbenzene                        | CCCC.1-Chlorohexane     |
|------------------------------|---------------------------------|-------------------------------|--------------------------------------------|-------------------------|
| B. Bromomethane              | V. Benzene                      | PP. Bromochloromethane        | JJJ. 1,2-Dichlorobenzene                   | DDDD. Isopropyl alcohol |
| C. Vinyl choride**           | W. trans-1,3-Dichloropropene    | QQ. 1,1-Dichloropropene       | KKK. 1,2,4-Trichlorobenzene                | EEEE. Acetonitrile      |
| D. Chloroethane              | X. Bromoform*                   | RR. Dibromomethane            | LLL. Hexachlorobutadiene                   | FFFF. Acrolein          |
| E. Methylene chloride        | Y. 4-Methyl-2-pentanone         | SS. 1,3-Dichloropropane       | MMM. Naphthalene                           | GGGG. Acrylonitrile     |
| F. Acetone                   | Z. 2-Hexanone                   | TT. 1,2-Dibromoethane         | NNN. 1,2,3-Trichlorobenzene                | НННН. 1,4-Dioxane       |
| G. Carbon disulfide          | AA. Tetrachloroethene           | UU. 1,1,1,2-Tetrachloroethane | 000. 1,3,5-Trichlorobenzene                | IIII. Isobutyl alcohol  |
| H. 1,1-Dichloroethene**      | BB. 1,1,2,2-Tetrachloroethane*  | VV. Isopropylbenzene          | PPP. trans-1,2-Dichloroethene              | JJJJ. Methacrylonitrile |
| 1. 1,1-Dichloroethane*       | CC. Toluene**                   | WW. Bromobenzene              | QQQ. cis-1,2-Dichloroethene                | KKKK. Propionitrile     |
| J. 1,2-Dichloroethene, total | DD. Chlorobenzene*              | XX. 1,2,3-Trichloropropane    | RRR. m,p-Xylenes                           | LLLL. Ethyl ether       |
| K. Chloroform**              | EE. Ethylbenzene**              | YY. n-Propylbenzene           | SSS. o-Xylene                              | MMMM. Benzyl chloride   |
| L. 1,2-Dichloroethane        | FF. Styrene                     | ZZ. 2-Chlorotoluene           | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | NNNN.                   |
| M. 2-Butanone                | GG. Xylenes, total              | AAA. 1,3,5-Trimethylbenzene   | UUU. 1,2-Dichlorotetrafluoroethane         | .0000                   |
| N. 1,1,1-Trichloroethane     | HH. Vinyl acetate               | BBB. 4-Chlorotoluene          | VVV. 4-Ethyltoluene                        | рррр.                   |
| O. Carbon tetrachloride      | II. 2-Chloroethylvinyl ether    | CCC. tert-Butylbenzene        | WWW. Ethanol                               | ବରବର.                   |
| P. Bromodichloromethane      | JJ. Dichlorodifluoromethane     | DDD. 1,2,4-Trimethylbenzene   | XXX. Di-isopropyl ether                    | RRRR.                   |
| Q. 1,2-Dichloropropane**     | KK. Trichlorofluoromethane      | EEE. sec-Butylbenzene         | YYY. tert-Butanol                          | SSSS.                   |
| R. cis-1,3-Dichloropropene   | LL. Methyl-tert-butyl ether     | FFF. 1,3-Dichlorobenzene      | ZZZ. tert-Butyl alcohol                    | TTTT.                   |
| S. Trichloroethene           | MM. 1,2-Dibromo-3-chloropropane | GGG. p-IsopropyItoluene       | AAAA. Ethyl tert-butyl ether               | ບບບບ.                   |
| T. Dibromochloromethane      | NN. Methyl ethyl ketone         | HHH. 1,4-Dichlorobenzene      | BBBB. tert-Amyl methyl ether               | ww.                     |
|                              |                                 |                               |                                            |                         |

<sup>\* =</sup> System performance check compounds (SPCC) for RRF; \*\* = Calibration check compounds (CCC) for %RSD.

# VALIDATION FINDINGS WORKSHEET Initial Calibration

Page:\_\_ 2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

LDC #: 174718/

SDG #:

| Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".    N/A   N/A   Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|
| see qualifications below for all questions answered "N". Not applicable questions are identified<br><u>\text{\text{NA}} \text{\text{Did}} the laboratory perform a 5 point calibration prior to sample analysis?</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | as "N/A".     |                |
| see qualifications below for all questions answered "N". Not applicable questions a \u00e4\u00e4A \u00e4 \u00e4A \u00e | re identified |                |
| see qualifications below for all questions answered "N". Not applicable NA Did the laboratory perform a 5 point calibration prior to sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | questions a   | analysis?      |
| see qualifications below for all questions answered "N". Not Not Not Did the laboratory perform a 5 point calibration prid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t applicable  | or to sample   |
| see qualifications below for all questions answe \u00e4\u00e4 \u00e4 \u0 | red "N". No   | libration prid |
| see qualifications below for all quest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ions answe    | a 5 point ca   |
| see qualifications below to the laborato Did the laborato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or all quest  | ry perform a   |
| see qualificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ons below f   | ne laborato    |
| se(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e qualificati |                |
| N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dease set     | X N/A          |

Did the laboratory perform a 5 point calibration prior to sample analysis? Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

N/A

|                                                                                                                                                                                                                                              | Qualifications                  |              |               |  |  |  |  |  |  |  |  |  |  |   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|---------------|--|--|--|--|--|--|--|--|--|--|---|--|
| ıluation?                                                                                                                                                                                                                                    | Associated Samples              | 411十四4       | 1F07039-Blank |  |  |  |  |  |  |  |  |  |  |   |  |
| is the acceptance criteria used for evaluation?<br>ia?<br>teria of ≤30 %RSD and ≥0.05 RRF?                                                                                                                                                   | Finding RRF<br>(Limit: >0.05)   | 0.032        |               |  |  |  |  |  |  |  |  |  |  |   |  |
| nat was the acceptan<br>criteria?<br>ion criteria of ≤30 %R                                                                                                                                                                                  | Finding %RSD<br>(Limit: <30.0%) |              |               |  |  |  |  |  |  |  |  |  |  | • |  |
| evaluation? If yes, where the acceptance                                                                                                                                                                                                     | Compound                        | Ş            |               |  |  |  |  |  |  |  |  |  |  |   |  |
| Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evolute initial calibration meet the acceptance criteria? Were all %RSDs and RRFs within the validation criteria of $\le$ 30 %RSD and $\ge$ 0.05 RRF? | Standard ID                     | 4cms-60 10AL |               |  |  |  |  |  |  |  |  |  |  |   |  |
| N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                        | atę                             | 12/16/2      |               |  |  |  |  |  |  |  |  |  |  |   |  |

# **VALIDATION FINDINGS WORKSHEET** Continuing Calibration

2nd Reviewer: Page: Reviewer:\_\_

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

LDC #: 174718/ SDG #: 445 con

SDG#:

Agase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

| Qualifications                           | 4/64/7   |              |    |  |  |  |  |
|------------------------------------------|----------|--------------|----|--|--|--|--|
| Associated Samples                       | AH + AH. | 7F07029-81K, | /# |  |  |  |  |
| Finding RRF<br>(Limit: <u>&gt;</u> 0.05) | 0.033    |              |    |  |  |  |  |
| Finding %D<br>(Limit: <25.0%)            |          |              |    |  |  |  |  |
| Compound                                 | W        |              |    |  |  |  |  |
| Standard ID                              | 661      |              |    |  |  |  |  |
| Date                                     | 10/1/9   | (:12 FM      |    |  |  |  |  |
| > #                                      |          |              |    |  |  |  |  |

|  |  |  | Π |   | Γ | Г |   | Π |  |
|--|--|--|---|---|---|---|---|---|--|
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   | • |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   | - |   |  |
|  |  |  |   |   |   |   |   |   |  |
|  |  |  |   |   |   |   |   |   |  |

# Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

Boeing Realty Corp., Bldg. C-6 Facility

**Collection Date:** 

June 7, 2007

**LDC Report Date:** 

September 27, 2007

Matrix:

Water

Parameters:

Volatiles

Validation Level:

Tier 3

Laboratory:

**TestAmerica** 

Sample Delivery Group (SDG): IQF0673

Sample Identification

IRZMW002B\_WG060707\_0001 IRZMW002B\_WG060707\_0001MS IRZMW002B\_WG060707\_0001MSD

#### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

In the case where %RSD was greater than 15.0%, the laboratory used a calibration curve to evaluate the compound. All coefficients of determination ( $r^2$ ) were greater than or equal to 0.990.

For the purposes of technical evaluation, all compounds were evaluated against the 30.0% (%RSD) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were within method and validation criteria with the following exceptions:

| Date    | Compound   | RRF (Limits)  | Associated Samples                                                                                | Flag                                    | A or P |
|---------|------------|---------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| 6/12/07 | 2-Butanone | 0.040 (≥0.05) | IRZMW002B_WG060707_0001<br>IRZMW002B_WG060707_0001MS<br>IRZMW002B_WG060707_0001MSD<br>7F13011-BLK | J (all detects)<br>UJ (all non-detects) | Α      |

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

For the purposes of technical evaluation, all compounds were evaluated against the 25.0% (%D) National Functional Guideline criteria. Unless noted above, all compounds were within the validation criteria.

All of the continuing calibration RRF values were within method and validation criteria with the following exceptions:

| Date    | Compound   | RRF (Limits)  | Associated Samples                                                                                | Flag                                    | A or P |
|---------|------------|---------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| 6/13/07 | 2-Butanone | 0.039 (≥0.05) | IRZMW002B_WG060707_0001<br>IRZMW002B_WG060707_0001MS<br>IRZMW002B_WG060707_0001MSD<br>7F13011-BLK | J (all detects)<br>UJ (all non-detects) | А      |

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

#### XIV. System Performance

The system performance was acceptable.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

#### XVII. Field Blanks

No field blanks were identified in this SDG.

#### Boeing Realty Corp., Bldg. C-6 Facility Volatiles - Data Qualification Summary - SDG IQF0673

| SDG     | Sample                  | Compound   | Flag                                    | A or P | Reason                       |
|---------|-------------------------|------------|-----------------------------------------|--------|------------------------------|
| IQF0673 | IRZMW002B_WG060707_0001 | 2-Butanone | J (all detects)<br>UJ (all non-detects) | А      | Initial calibration (%RRF)   |
| IQF0673 | IRZMW002B_WG060707_0001 | 2-Butanone | J (all detects)<br>UJ (all non-detects) | А      | Continuing calibration (RRF) |

Boeing Realty Corp., Bldg. C-6 Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG IQF0673

No Sample Data Qualified in this SDG



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing 701 N. Parkcenter Drive

Santa Ana, CA 92705

Attention: Clara Boeru

Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0673

Sampled: 06/07/07

Received: 06/07/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

|                                 |                 |                  | MDL   | Reporting | Sample | Dilution   | Date      | Date     | Data       |
|---------------------------------|-----------------|------------------|-------|-----------|--------|------------|-----------|----------|------------|
| Analyte                         | Method          | Batch            | Limit | Limit     | Result | Factor     | Extracted | Analyzed | Qualifiers |
| Sample ID: IQF0673-01 (IRZMW002 | B_WG060707_0001 | - Water)         |       |           | Sample | d: 06/07/0 | 07        |          |            |
| Reporting Units: ug/l           |                 |                  |       |           |        |            |           |          |            |
| Acetone                         | EPA 8260B       | 7F13011          | 4.5   | 10        | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Benzene                         | EPA 8260B       | 7F13011          | 0.28  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Bromobenzene                    | EPA 8260B       | 7F13011          | 0.27  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Bromochloromethane              | EPA 8260B       | 7F13011          | 0.32  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Bromodichloromethane            | EPA 8260B       | 7F13011          | 0.30  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Bromoform                       | EPA 8260B       | 7F13011          | 0.40  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Bromomethane                    | EPA 8260B       | 7F13011          | 0.42  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 2-Butanone (MEK)                | EPA 8260B       | 7F13011          | 4.7   | 5.0       | ND U   | J 1        | 06/13/07  | 06/13/07 |            |
| n-Butylbenzene                  | EPA 8260B       | 7F13011          | 0.37  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| sec-Butylbenzene                | EPA 8260B       | 7F13011          | 0.25  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| tert-Butylbenzene               | EPA 8260B       | 7F13011          | 0.22  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Carbon Disulfide                | EPA 8260B       | 7F13011          | 0.48  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Carbon tetrachloride            | EPA 8260B       | 7 <b>F</b> 13011 | 0.28  | 0.50      | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Chlorobenzene                   | EPA 8260B       | 7F13011          | 0.36  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Chloroethane                    | EPA 8260B       | 7F13011          | 0.40  | 2.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Chloroform                      | EPA 8260B       | 7F13011          | 0.33  | 1.0       | 0.99   | 1          | 06/13/07  | 06/13/07 | J          |
| Chloromethane                   | EPA 8260B       | 7F13011          | 0.40  | 2.0       | ND     | ĺ          | 06/13/07  | 06/13/07 |            |
| 2-Chlorotoluene                 | EPA 8260B       | 7F13011          | 0.28  | 1.0       | ND     | ]          | 06/13/07  | 06/13/07 |            |
| 4-Chlorotoluene                 | EPA 8260B       | 7F13011          | 0.29  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,2-Dibromo-3-chloropropane     | EPA 8260B       | 7F13011          | 0.97  | 2.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Dibromochloromethane            | EPA 8260B       | 7F13011          | 0.28  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,2-Dibromoethane (EDB)         | EPA 8260B       | 7F13011          | 0.40  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,4-Dichlorobenzene             | EPA 8260B       | 7F13011          | 0.37  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,2-Dichlorobenzene             | EPA 8260B       | 7F13011          | 0.32  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,3-Dichlorobenzene             | EPA 8260B       | 7F13011          | 0.35  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Dichlorodifluoromethane         | EPA 8260B       | 7F13011          | 0.26  | 1.0       | ND     | i          | 06/13/07  | 06/13/07 |            |
| 1,2-Dichloroethane              | EPA 8260B       | 7F13011          | 0.28  | 0.50      | ND     | i          | 06/13/07  | 06/13/07 |            |
| 1,1-Dichloroethane              | EPA 8260B       | 7F13011          | 0.27  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,1-Dichloroethene              | EPA 8260B       | 7F13011          | 0.42  | 1.0       | 5.5    | 1          | 06/13/07  | 06/13/07 |            |
| trans-1,2-Dichloroethene        | EPA 8260B       | 7F13011          | 0.27  | 1.0       | 3.8    | 1          | 06/13/07  | 06/13/07 |            |
| 1,2-Dichloropropane             | EPA 8260B       | 7F13011          | 0.35  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 2,2-Dichloropropane             | EPA 8260B       | 7F13011          | 0.34  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| cis-1,3-Dichloropropene         | EPA 8260B       | 7F13011          | 0.22  | 0.50      | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,1-Dichloropropene             | EPA 8260B       | 7 <b>F</b> 13011 | 0.28  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| trans-1,3-Dichloropropene       | EPA 8260B       | 7F13011          | 0.32  | 0.50      | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Ethylbenzene                    | EPA 8260B       | 7F13011          | 0.25  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Hexachlorobutadiene .           | EPA 8260B       | 7F13011          | 0.38  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 2-Hexanone                      | EPA 8260B       | 7F13011          | 2.6   | 6.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| lsopropylbenzene                | EPA 8260B       | 7F13011          | 0.25  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| p-Isopropyltoluene              | EPA 8260B       | 7F13011          | 0.28  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Methyl-tert-butyl Ether (MTBE)  | EPA 8260B       | 7F13011          | 0.32  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| TestAmerica - Irvine, CA        |                 |                  |       |           |        |            |           |          |            |

Nicholas Marz Project Manager 1 lowfor

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0673 <Page 2 of 42>

# Testamerica ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0673

Sampled: 06/07/07

Received: 06/07/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

|                                       |                 |                | MDL   | Reporting | Sample | Dilution   | Date      | Date     | Data       |
|---------------------------------------|-----------------|----------------|-------|-----------|--------|------------|-----------|----------|------------|
| Analyte                               | Method          | Batch          | Limit | Limit     | Result | Factor     | Extracted | Analyzed | Qualifiers |
| Sample ID: IQF0673-01 (IRZMW002E      | 3_WG060707_0001 | - Water) - coi | nt.   |           | Sample | d: 06/07/0 | 07        |          |            |
| Reporting Units: ug/l                 |                 |                |       |           |        |            |           |          |            |
| Methylene chloride                    | EPA 8260B       | 7F13011        | 0.95  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 4-Methyl-2-pentanone (MIBK)           | EPA 8260B       | 7F13011        | 3.5   | 5.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| n-Propylbenzene                       | EPA 8260B       | 7F13011        | 0.27  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Styrene                               | EPA 8260B       | 7F13011        | 0.16  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,1,1,2-Tetrachloroethane             | EPA 8260B       | 7F13011        | 0.27  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,1,2,2-Tetrachloroethane             | EPA 8260B       | 7F13011        | 0.24  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Tetrachloroethene                     | EPA 8260B       | 7F13011        | 0.32  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Toluene                               | EPA 8260B       | 7F13011        | 0.36  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,2,3-Trichlorobenzene                | EPA 8260B       | 7F13011        | 0.30  | 1.0       | ND     | i          | 06/13/07  | 06/13/07 |            |
| 1,2,4-Trichlorobenzene                | EPA 8260B       | 7F13011        | 0.48  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,1,2-Trichloroethane                 | EPA 8260B       | 7F13011        | 0.30  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,1,1-Trichloroethane                 | EPA 8260B       | 7F13011        | 0.30  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Trichloroethene                       | EPA 8260B       | 7F13011        | 0.26  | 1.0       | 81     | 1          | 06/13/07  | 06/13/07 |            |
| Trichlorofluoromethane                | EPA 8260B       | 7F13011        | 0.34  | 2.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,2,3-Trichloropropane                | EPA 8260B       | 7F13011        | 0.40  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,2,4-Trimethylbenzene                | EPA 8260B       | 7F13011        | 0.23  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| 1,3,5-Trimethylbenzene                | EPA 8260B       | 7F13011        | 0.26  | 1.0       | ND     | i          | 06/13/07  | 06/13/07 |            |
| Vinyl acetate                         | EPA 8260B       | 7F13011        | 1.0   | 6.0       | ND     | 1          | 06/13/07  | 06/13/07 |            |
| Vinyl chloride                        | EPA 8260B       | 7F13011        | 0.30  | 0.50      | 54     | 1          | 06/13/07  | 06/13/07 |            |
| Xylenes, Total                        | EPA 8260B       | 7F13011        | 0.90  | 1.0       | ND     | 1          | 06/13/07  | 06/13/07 | _          |
| Surrogate: 4-Bromofluorobenzene (80-1 | 20%)            |                |       |           | 91 %   |            |           |          |            |
| Surrogate: Dibromofluoromethane (80-1 | 120%)           |                |       |           | 94 %   |            |           |          |            |
| Surrogate: Toluene-d8 (80-120%)       |                 |                |       |           | 97 %   |            |           |          |            |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager a lootos



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0673

Sampled: 06/07/07

Received: 06/07/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

| Analyte                              | Method           | Batch        | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result |             | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------|------------------|--------------|--------------|--------------------|------------------|-------------|-------------------|------------------|--------------------|
| Sample ID: IQF0673-01RE1 (IRZMV      | W002B_WG060707_0 | 001 - Water) | - cont.      |                    | Sample           | ed: 06/07/0 | )7                |                  |                    |
| Reporting Units: ug/l                |                  |              |              |                    |                  |             |                   |                  |                    |
| cis-1,2-Dichloroethene               | EPA 8260B        | 7F14005      | 1.6          | 5.0                | 310              | 5           | 06/14/07          | 06/14/07         |                    |
| Surrogate: 4-Bromofluorobenzene (80- | 120%)            |              |              |                    | 88 %             |             |                   |                  |                    |
| Surrogate: Dibromofluoromethane (80  | -120%)           |              |              |                    | 101 %            |             |                   |                  |                    |
| Surrogate: Toluene-d8 (80-120%)      |                  |              |              |                    | 103 %            |             |                   |                  |                    |
|                                      |                  |              |              |                    |                  |             |                   |                  |                    |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager r 100407



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

Project ID: Boeing C-6 Torrance EM2727 (Building 2)

701 N. Parkcenter Drive Santa Ana, CA 92705 Attention: Clara Boeru

Report Number: IQF0673

Sampled: 06/07/07

Received: 06/07/07

#### **VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)**

|                                      |                  |              | MDL     | Reporting | Sample      |             | Date      | Date     | Data       |
|--------------------------------------|------------------|--------------|---------|-----------|-------------|-------------|-----------|----------|------------|
| Analyte                              | Method           | Batch        | Limit   | Limit     | Result      | Factor      | Extracted | Analyzed | Qualifiers |
| Sample ID: IQF0673-01RE2 (IRZMV      | V002B_WG060707_0 | 001 - Water) | - cont. |           | Sample      | :d: 06/07/0 | 17        |          | P-HS       |
| Reporting Units: ug/I                |                  |              |         |           | <del></del> |             |           |          |            |
| Iodomethane                          | EPA 8260B        | 7F15010      | 1.0     | 2.0       | ND          | 1           | 06/15/07  | 06/15/07 |            |
| Tetrahydrofuran (THF)                | EPA 8260B        | 7F15010      | 3.5     | 10        | ND          | 1           | 06/15/07  | 06/15/07 |            |
| Surrogate: 4-Bromofluorobenzene (80- | 120%)            |              |         |           | 95 %        |             |           | •        |            |
| Surrogate: Dibromofluoromethane (80- | -120%)           |              |         |           | 107 %       |             |           |          |            |
| Surrogate: Toluene-d8 (80-120%)      |                  |              |         |           | 101 %       |             |           |          |            |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0673 <Page 5 of 42>

| LDC #: 17471C1           | <b>VALIDATION COMPLETENESS WORKSHEET</b> |
|--------------------------|------------------------------------------|
| SDG #: IQF0673           | Tier 3                                   |
| Laboratory: Test America | _                                        |

| Date:         | 9/26/0     |
|---------------|------------|
| Page:_        | _/of/      |
| Reviewer:     | 9          |
| 2nd Reviewer: | <b>X</b> ' |

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|       | Validation Area                                |         | Comments               |
|-------|------------------------------------------------|---------|------------------------|
| l.    | Technical holding times                        | ٨       | Sampling dates: 6/1/67 |
| II.   | GC/MS Instrument performance check             | Δ       | , ,                    |
| 111.  | Initial calibration                            | gω      | % RSP, 1" 10.990       |
| IV.   | Continuing calibration/                        | SW      |                        |
| V.    | Bianks                                         | Λ       |                        |
| VI.   | Surrogate spikes                               | Δ       |                        |
| VII.  | Matrix spike/Matrix spike duplicates           | A       |                        |
| VIII. | Laboratory control samples                     | Α       | LC 5                   |
| IX.   | Regional Quality Assurance and Quality Control | N       |                        |
| X.    | Internal standards                             | Д       |                        |
| XI.   | Target compound identification                 | Δ       |                        |
| XII.  | Compound quantitation/CRQLs                    | 4       |                        |
| XIII. | Tentatively identified compounds (TICs)        | Ν       | NOT Reported           |
| XIV.  | System performance                             | Δ       | Ų.                     |
| XV.   | Overall assessment of data                     | A       |                        |
| XVI.  | Field duplicates                               | $N_{I}$ |                        |
| XVII. | Field blanks                                   | N       |                        |

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

|     | Way!                                    |             |              |      |     |    |  |
|-----|-----------------------------------------|-------------|--------------|------|-----|----|--|
| 1 1 | 2 = Q & & 3=<br>IRZMW002B_WG060707_0001 | 11/         | 7F13011-B4/  | 21 🗸 |     | 31 |  |
| 2 / | IRZMW002B_WG060707_0001MS               | 12 <b>2</b> | 7F14005-BUKI | 22   |     | 32 |  |
| 3 1 | IRZMW002B_WG060707_0001MSD              | 13 3        | 7915010-841  | 23   |     | 33 |  |
| 4   |                                         | 14          |              | 24   |     | 34 |  |
| 5   |                                         | 15          |              | 25   |     | 35 |  |
| 6   |                                         | 16          |              | 26   | 40- | 36 |  |
| 7   |                                         | 17          |              | 27   |     | 37 |  |
| 8   |                                         | 18          |              | 28   |     | 38 |  |
| 9   |                                         | 19          |              | 29   |     | 39 |  |
| 10  |                                         | 20          |              | 30   |     | 40 |  |

| DC #:  | 7 | 1471 | (2)   | , |
|--------|---|------|-------|---|
| SDG #: |   | pie  | coned |   |
|        |   | T    |       |   |

#### **VALIDATION FINDINGS CHECKLIST**

|        | Page:_   | <u></u> | 2 |
|--------|----------|---------|---|
| R      | eviewer: |         | 2 |
| 2nd Re | eviewer: | "K      | / |

| Method: Volatiles (EPA SW 846 Method 8260B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Maria de Cara |    |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----|-------------------|
| Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes             | No            | NA | Findings/Comments |
| roce interioration uncome a superior and the superior sup |                 |               |    |                   |
| All technical holding times were met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _               |               |    |                   |
| Cooler temperature criteria was met.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               |    |                   |
| 19500/Singrament of termanol cases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T               |               |    |                   |
| Were the BFB performance results reviewed and found to be within the specified criteria?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _               |               |    |                   |
| Were all samples analyzed within the 12 hour clock criteria?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |               |    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |               |    |                   |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |    |                   |
| Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _               |               |    |                   |
| Was a curve fit used for evaluation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               |    |                   |
| Did the initial calibration meet the curve fit acceptance criteria of > 0.990?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |               |    |                   |
| Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W               | <b>A</b>      |    |                   |
| IV/Somming calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |               |    |                   |
| Was a continuing calibration standard analyzed at least once every 12 hours for<br>each instrument?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _               |               |    |                   |
| Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               |    |                   |
| Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | /             |    |                   |
| As Blanks No. 2 As a second of the second of |                 |               | T  |                   |
| Was a method blank associated with every sample in this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -               |               |    | ·                 |
| Was a method blank analyzed at least once every 12 hours for each matrix and concentration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               |    |                   |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /               | 4             |    |                   |
| M Sprogale spikes i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               |    |                   |
| Were all surrogate %R within QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\triangleleft$ |               |    |                   |
| If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |               | 1  |                   |
| MI Malitx Spike Matrix Spike dupicales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |               |    |                   |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |               |    |                   |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |               |    |                   |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               |               |    |                   |
| Militaboratory control samples 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>        |               |    |                   |
| Was an LCS analyzed for this SDG?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |    |                   |

| .DC #: | 17471   | 0)   |
|--------|---------|------|
| 3DG #: |         | come |
|        | $-\tau$ |      |

#### **VALIDATION FINDINGS CHECKLIST**

| 2 <sub>0f_</sub> | 2    |
|------------------|------|
|                  |      |
|                  | Z    |
|                  | 2of_ |

| Validation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes | No          | NA | Findings/Comments             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|----|-------------------------------|
| Was an LCS analyzed per analytical batch?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |             |    |                               |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |             |    |                               |
| is regional cuality a strain early country control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |             |    |                               |
| Were performance evaluation (PE) samples performed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |             |    |                               |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |             |    |                               |
| × mencistrosins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |    |                               |
| Were internal standard area counts within -50% or +100% of the associated calibration standard?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |    |                               |
| Were retention times within ± 30 seconds of the associated calibration standard?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |             |    |                               |
| Кій апрасопроблення велінення за веро за верона від                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |             |    | The State of the State of the |
| Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |             |    |                               |
| Did compound spectra meet specified EPA "Functional Guidelines" criteria?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |             |    | <u> </u>                      |
| Were chromatogram peaks verified and accounted for?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 46.07.32.50 |    |                               |
| XII Somptuniciquamulation/CROLe il se est est est est est est est est est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |             |    |                               |
| Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |             |    |                               |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |             |    |                               |
| All A serial por transfer in the company of the serial property of t |     |             |    |                               |
| Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |             |    |                               |
| Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |             |    |                               |
| Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |             |    |                               |
| SV SV temperomance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |             |    |                               |
| System performance was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   |             |    |                               |
| √ Oyerallassessmentoj data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |             |    |                               |
| Overall assessment of data was found to be acceptable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1   |             |    |                               |
| Milieopolicajes (f. 1905)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |             |    |                               |
| Field duplicate pairs were identified in this SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |             |    |                               |
| Target compounds were detected in the field duplicates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |             | _  |                               |
| VII Feld Danks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.  |             |    |                               |
| Field blanks were identified in this SDG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | _           | -  |                               |
| Farget compounds were detected in the field blanks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |             | 7  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |             |    |                               |

METHOD: VOA (EPA SW 846 Method 8260B)

| A. Chloromethane*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S. Trichloroethene               | KK. Trichlorofluoromethane             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T. Dibromochloromethane          | Methylate tandament                    | OCC. reit-bulyibelizere                    | UUU. 1,2-Dichlorotetrafluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C. Vinyl choride**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                        | UUU. 1,2,4-1rimethylbenzene                | VVV. 4-Ethyltotuene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U. 1,1,2-1 nchloroethane         | MM. 1,2-Dibromo-3-chloropropane        | EEE. sec-Butylbenzene                      | Www. Ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D. Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V. Benzene                       | NN. Methyl ethyl ketone                | FFF. 1.3-Dichlombenzene                    | 2 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E. Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W. trans-1,3-Dichloropropene     | OO, 2.2-Dichloropmoane                 |                                            | AXX. Unasopropyr etner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| F. Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X. Bromoform*                    |                                        | ded. p-tsopropyticiuene                    | YYY, tert-Butanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | rr. gromochloromelhane                 | HHH. 1,4-Dichlorobenzene                   | ZZZ. tert-Butvi alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| G. Carbon disuffide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y. 4-Methyl-2-pentanone          | QQ. 1,1-Dichloropropene                | III. n-Butybanzana                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H. 1,1-Dichloroethene**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z. 2-Hexanone                    | RR Dibromothan                         |                                            | AAAA. Ethyl tent-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| . 1.1.Dichlomethenet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                        | JJJ. 1,2-Dichlorobenzene                   | BBBB. tert-Amyl methyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA. Tetrachloroethene            | SS. 1,3-Dichloropropane                | KKK. 1,2.4-Trichiombenzene                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J. 1,2-Dichloroethene, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BB 1122-Tetmoblomothers          | 1 .                                    |                                            | CCC:1-Chioronexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | co. 1, 1,4,4-1 ettacnioroetnane- | TT. 1,2-Dibromoethane                  | LLL. Hexachlorobutadiene                   | DDDD. Isopropyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| K. Chloroform**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CC. Toluene**                    | UU. 1,1,1,2-Tetrachloroethane          | MMM. Narbitalene                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L. 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DD. Chlombenzene*                |                                        |                                            | EEEE, Acetonitnie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | v v. isopropyibenzene                  | NNN. 1,2,3-Trichlombenzene                 | FFFF, Acrolein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ivi. z-butanome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EE. Ethylbenzene**               | WW. Bromobenzene                       | OOO. 1.3.5-Trichlombenzene                 | The state of the s |
| N. 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FF. Styrene                      | XX. 1,2,3-Trichlompropane              | PPP trans-12-Dichlomothus                  | occordinated and a second a second and a second a second and a second  |
| O. Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GG. Xvlenes, total               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                            | nnnn. 1,4-Uloxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| d distribution of the state of |                                  | 1 1. n-rropyibenzene                   | QQQ. cls-1,2-Dichlomethene                 | IIII. tsobutyl atcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HH. Vinyl acetate                | ZZ. 2-Chlorotoluene                    | RRR. m.p-Xylenes                           | 111 Mothocodocated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q. 1,2-Dichloropropane**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | II. 2-Chloroethylvinyl ether     | AAA. 1,3,5-Trimethylbenzene            | ordy X-C VSS                               | Account we will be a second and |
| R. cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J. Dichlomofftcommethons         |                                        |                                            | KKKK, Propionitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | BBB. 4-Chlorotoluene                   | TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane | רווי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

<sup>\* =</sup> System performance check compounds (SPCC) for RRF; \*\* = Calibration check compounds (CCC) for %RSD.

| VALIDATION FINDINGS WORKSHEET |  |
|-------------------------------|--|
|-------------------------------|--|

(2117) #211c)

| ot    | B         | 4             |
|-------|-----------|---------------|
| Page: | Reviewer: | 2nd Reviewer: |

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis? Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's? A Z Z Z

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation? Did the initial calibration meet the acceptance criteria?

Were all %RSDs and RRFs within the validation criteria of <30 %RSD and >0.05 RRF?

N N/A

| Qualifications                | V/ cn/C      |             |  |  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-------------------------------|--------------|-------------|--|--|---|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Associated Samples            | A// t        | 118-110817r |  |  |   |  |  | The state of the s |  |  |  |  |  |  |
| Finding RRF<br>(Limit: >0.05) | 0.040        |             |  |  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Finding %RSD (Limit: <30.0%)  |              |             |  |  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Compound                      | Ź            |             |  |  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Standard ID                   | 1401 16-5M25 |             |  |  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Date                          | L0/11/2      |             |  |  |   |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| #                             |              |             |  |  | L |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

**VALIDATION FINDINGS WORKSHEET** 

Continuing Calibration

LDC #: 17471C/

SDG #:\_\_

2nd Reviewer:\_ Reviewer:\_ Page:

> Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: GC/MS VOA (EPA SW 846 Method 8260B) ∀/N 7

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

N/N/A

|                               |        |               | <br> | <br> | <br> | <br> | <br> |  | <br> | <br> |   | <br> |  |  | <br> |
|-------------------------------|--------|---------------|------|------|------|------|------|--|------|------|---|------|--|--|------|
| Qualifications                | J/W/10 |               |      |      |      |      |      |  |      |      |   |      |  |  |      |
| Associated Samples            | A11+   | 1F13011-Blank |      |      |      |      |      |  |      |      |   |      |  |  |      |
| Finding RRF<br>(Limit: >0.05) | 0.039  |               |      |      |      |      |      |  |      |      |   |      |  |  |      |
| Finding %D<br>(Limit: <25.0%) |        |               |      |      |      |      |      |  |      |      | • |      |  |  |      |
| Compound                      | S      |               |      |      |      |      |      |  |      |      |   |      |  |  |      |
| Standard ID                   | # 95%  |               |      |      |      |      |      |  |      |      |   |      |  |  |      |
| Date                          | 13/01  | 6:13          |      |      |      |      |      |  |      |      |   |      |  |  |      |
| #                             |        |               |      |      |      |      |      |  |      |      |   |      |  |  |      |

1212 121 SDG#: LDC#:

# Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{s_x})(A_{b_x})(C_x)$  average RRF = sum of the RRFs/number of standards %RSD = 100  $^*$  (S/X)

A<sub>x</sub> = Area of compound,
C<sub>x</sub> = Concentration of compound,
S = Standard deviation of the RRFs
X = Mean of the RRFs

 $A_{\rm ls}$  = Area of associated internal standard  $C_{\rm ls}$  = Concentration of internal standard

|        |             |                                       | No.                                                          |                 |                 |                       |                       |          |              |
|--------|-------------|---------------------------------------|--------------------------------------------------------------|-----------------|-----------------|-----------------------|-----------------------|----------|--------------|
|        |             |                                       |                                                              | Reported        | Recalculated    | Reported              | Recalculated          | Reported | Recalculated |
| #      | Standard ID | Calibration<br>Date                   | Compound (Reference Internal Standard)                       | RRF<br>(Sector) | RRF<br>(SV std) | Average RRF (initial) | Average RRF (initial) | %RSD     | %RSD         |
| -      | GCMS-3/     | 2/21/07                               | Tetrahydro (ucan) (1st Mernal standard)                      | 801.0           | 0. 10B          | 0.115                 | 0.115                 | 19.09    | 60.61        |
|        |             |                                       | (2nd internal standard)                                      |                 |                 |                       |                       |          |              |
|        |             |                                       | (3rd internal standard)                                      |                 |                 |                       |                       |          |              |
| 2      | 16-5M20     | 10/2/17                               | Chloride (1st internal standard)                             | 256.0           | 2.956           | 106.0                 | /36.0                 | 12.58    | 12.88        |
| T      |             |                                       | Tolucne (2nd internal standard)                              | 1.362           | 1.362           | 1.274                 | 1.274                 | 6.73     | 6.73         |
| 1      |             |                                       | 2 n 2cM (3rd internal standard)                              | 1.681           | /:68/           | 1.547                 | 1.847                 | 7.89     | 7.89         |
| 6      |             |                                       | 1, 1, 2, 2, 7. Tetra-<br>chloroethan (1st internal standard) | P.674           | h29-0           | 165.0                 | 0.59/                 | her      | 124/         |
| Т      |             | · · · · · · · · · · · · · · · · · · · | (2nd internal standard)                                      |                 |                 |                       |                       |          |              |
| $\top$ |             |                                       | (3rd internal standard)                                      |                 |                 |                       |                       |          |              |
| 4      | GCM5 23     | L9/E1/5                               | る」、2 (1st internal standard)                                 | 0.575           | 0.575           | 265.0                 | 265.0                 | 7.06     | 7-06         |
| Т      |             |                                       | (2nd internal standard)                                      |                 |                 |                       |                       |          |              |
| ┪      | GCMS-3/     |                                       | 5/31/67 Letrahydigational standard                           | 0.076           | 0.016           | 0.075                 | 0.075                 | 9./6     | 9//6         |
|        |             |                                       |                                                              |                 | 4               | 1                     |                       | , ,      |              |

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

LDC#: 1747]CJ SDG #:

# Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. RRF - RRF)/ave. RRF RRF =  $(A_x)(C_s)/(A_s)(C_x)$ 

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF  $A_x = A_{rea}$  of  $A_{s} = A_{rea}$  of  $C_x = C_{s} = C_{oncert}$ 

 $A_{\rm ls}$  = Area of associated internal standard  $C_{\rm ls}$  = Concentration of internal standard

| L |             |                     |                                         |                       |             |              |            |              |
|---|-------------|---------------------|-----------------------------------------|-----------------------|-------------|--------------|------------|--------------|
|   |             |                     |                                         | - Janu                | Reported    | Recalculated | Reported   | Recalculated |
| * | Standard ID | Calibration<br>Date | Compound (Reference internal Standard)  | Average RRF (initial) | RRF<br>(CC) | RRF<br>(CC)  | <b>Q</b> % | <b>Q%</b>    |
| - | ces         | 20/81/7             | una/de (1st internal standard)          | 0.40/                 | 7h8-0       | CH3-0        | 5.9        | 6.3          |
|   | 6:19        |                     | Toluene (2nd internal standard)         | 1.274                 | 1.369       | 1-369        | 7.5        | 7.5          |
|   |             |                     | E Try (or (3rd internal standard)       | 1.547                 | 1.691       | 1.63/        | 9.3        | 9.3          |
| 2 |             |                     | chloroe than (1st internal standard)    | 165'0                 | 6.79.0      | 619.0        | 4.7        | 47           |
| [ |             |                     | (2nd internal standard)                 |                       |             |              |            |              |
|   |             |                     | (3rd internal standard)                 |                       |             |              |            |              |
| 3 | eed         | 14/02               |                                         | 0.595                 | 0.616       | 2190         | 15,8       | 12.00        |
| T | 8:15        |                     | (2nd internal standard)                 |                       |             |              |            |              |
|   |             |                     | (3rd internal standard)                 |                       |             |              |            |              |
| 4 | ecs         |                     | (1st internal standard)                 |                       |             |              |            |              |
|   | 7:17        | 12/21/9             | 6/15/by Tetrahy (2pd internal standard) | 0.075                 | 4800        | J. 08Y       | 7          | 7/           |
|   |             |                     | (3rd internal standard)                 |                       |             |              |            |              |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 17471C1 SDG #: pre coner

#### VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

| Page:_        | of       |
|---------------|----------|
| Reviewer:_    | <u> </u> |
| 2nd reviewer: | Í.       |

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

| The p | percent recoveries | (%R) | of surrogates were | recalculated fo | r the compounds | identified below | using the fo | llowing calculation: |
|-------|--------------------|------|--------------------|-----------------|-----------------|------------------|--------------|----------------------|
|-------|--------------------|------|--------------------|-----------------|-----------------|------------------|--------------|----------------------|

% Recovery: SF/SS \* 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:\_\_\_\_ # /

|                       | Surrogate<br>Spiked | Surrogale<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            | 25-0                | 24.26              | 97                              | 97                                  | 0                     |
| Bromofuorobenzene     |                     | 22-74              | 91                              | 9/                                  |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     | -                     |
| Dibromofluoromethane  | ·                   | 23.54              | 94                              | 1 74                                | ·   l                 |

Sample ID:\_

|                       | Surrogate<br>Splked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            | -                   | •                  |                                 |                                     | :-                    |
| Bromofiuorobenzene    | ·                   |                    | •                               |                                     |                       |
| 1,2-Dichloroethane-d4 |                     | ·                  |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |

Sample ID:

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofiuorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     | ,                     |
| Dibromofluoromethane  |                     |                    |                                 |                                     | ·                     |

Sample ID:

|                       | Surrogale<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     | -                  |                                 |                                     | ·                     |
| Bromofluorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    |                                 |                                     |                       |

Sample ID:\_\_\_\_\_

|                       | Surrogate<br>Spiked | Surrogate<br>Found | Percent<br>Recovery<br>Reported | Percent<br>Recovery<br>Recalculated | Percent<br>Difference |
|-----------------------|---------------------|--------------------|---------------------------------|-------------------------------------|-----------------------|
| Toluene-d8            |                     |                    |                                 |                                     |                       |
| Bromofluorobenzene    |                     |                    |                                 |                                     |                       |
| 1,2-Dichloroethane-d4 |                     |                    |                                 |                                     |                       |
| Dibromofluoromethane  |                     |                    | ·                               |                                     |                       |

174716) LDC #:

# Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page:\_\_ Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified

% Recovery = 100 \* (SSC - SC)/SA

SSC = Spiked sample concentration SA = Spike added Where:

SC = Sample concentration

RPD = I MSC - MSDC I \* 2/(MSC + MSDC)

MS/MSD sample;

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

ላ જ

|                    | Spike<br>Added | p.   | Sample<br>Concentration               | Spiked Sample | ample    | Matrix Spike     | Spike     | Matrix Spike Duplicate | Duplicate | MS       | Ms/MsD       |
|--------------------|----------------|------|---------------------------------------|---------------|----------|------------------|-----------|------------------------|-----------|----------|--------------|
| piinodiiio         | 1/24)          | ( 7) | (1/64)                                | (1/6h)        | <u> </u> | Percent Recovery | ecovery   | Percent Decour         | 7.000     |          |              |
|                    | MS             | Man  | )                                     | I             |          |                  |           |                        | scovery   | ¥        | нрD          |
|                    |                |      |                                       | MS            | MSD      | Reported         | Recalc.   | Reported               | O O       |          |              |
| 1,1-Uichloroethene | ,<br>,<br>,    | 2,3  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 707           | , 00     |                  | 10,       |                        | 2000      | neported | Hecalculated |
| Trichloroethene    |                |      |                                       |               | 20:1     | /0/              | (1)       | 00/                    | 001       | `        |              |
|                    | 1              | 4    | 80.6                                  | 601           | 101      | 11/              | 111       | 101                    | 101       | 1        | 4            |
| Benzene            | •              |      |                                       | _             |          |                  | 117       | *                      | 12        | 7        | 5            |
| Tolinger           | +              | 1    |                                       | ٤. د          | 26.6     | 103              | 107       | 901                    | 106       | 7        | 7            |
| D                  |                |      | Sto ND                                | 10 72 X 24 J  | 21. 1    | 14               | 14 's 123 |                        |           | ,        |              |
| Chiorobenzene      |                |      |                                       |               | 1.       | 0/-11            | 10        | 106                    | 201       | 4        | 3.5          |
|                    | >              | >    |                                       | A.O.A         | 24.8     | 12               | ė,<br>s   | 20                     | >0        | 4        | 7            |

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within

MSDCLC.18B

LDC#: 17471C)
SDG#: 424 const

# VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: /of / Reviewer: /7

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 \* SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = | LCS - LCSD | \* 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 7F/30//-BS/

| LCS/I CSD | RPD              | Recalculated |                    |                 |         |         |               |  |  |   |  |
|-----------|------------------|--------------|--------------------|-----------------|---------|---------|---------------|--|--|---|--|
| /801      | 8                | Renorted     |                    |                 |         |         |               |  |  | - |  |
| D.        | tecovery         | Recalc       |                    |                 |         |         |               |  |  |   |  |
| LCSD      | Percent Recovery | Renorted     |                    |                 |         |         | NA            |  |  |   |  |
| CS        | Recovery         | Recalc       | 47                 | 26              | 66      | 86      | 16            |  |  |   |  |
| 0.10      | Percent Recovery | Reported     | 47                 | 16              | 66      | 86      | 76            |  |  |   |  |
| Sample    | tration<br>7/4   | LCSD         | νA                 |                 |         |         | *             |  |  |   |  |
| Spiked !  | Concentration    | SUI          | 24.7               | 23.0            | 24-8    | 24.5    | 13.0          |  |  |   |  |
| ike       | Added (7/E)      | LCSD         | & <b>⊘</b>         |                 |         |         | Ť             |  |  |   |  |
| dS        | A S              | SUL          | ₩.O                |                 |         |         | 1             |  |  |   |  |
|           | Compound         |              | 1,1-Dichloroethene | Trichloroethene | Benzene | Toluene | Chlorobenzene |  |  |   |  |

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

| _DC #:  | 1747101  |
|---------|----------|
| SDG #:_ | ne coned |

#### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

| Page:_        |          |
|---------------|----------|
| Reviewer:_    | B        |
| 2nd reviewer: | <u> </u> |

Percent solids, applicable to soils and solid matrices

Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

| Concen         | tration | = <u>(A,)(L)(DF)</u><br>(A <sub>k</sub> )(RRF)(V <sub>e</sub> )(%S)      | Example:                              |
|----------------|---------|--------------------------------------------------------------------------|---------------------------------------|
| A <sub>x</sub> | ·=      | Area of the characteristic ion (EICP) for the compound to be measured    | Sample I.D. # 1 :                     |
| A <sub>s</sub> | =       | Area of the characteristic ion (EICP) for the specific internal standard | - 11 - 2 A                            |
| <b>l</b>       | =       | Amount of internal standard added in nanograms (ng)                      | Conc. = $(7/6539)$ $(25)$ $(5)$ $(5)$ |
| RRF            | =       | Relative response factor of the calibration standard.                    | 373 113 3 300                         |
| ٧,             | =       | Volume or weight of sample pruged in milliliters (ml) or grams (g).      | =<br>80.6 ug/L                        |
| Df             | =       | Dilution factor.                                                         |                                       |

| #         | Sample ID | Compound | Reported Concentration | Calculated Concentration | Qualification |
|-----------|-----------|----------|------------------------|--------------------------|---------------|
|           |           |          |                        |                          |               |
|           |           |          |                        |                          |               |
|           |           |          |                        |                          |               |
| -         |           |          |                        |                          |               |
|           |           |          |                        |                          |               |
| •         | -         |          |                        |                          |               |
|           |           |          |                        |                          |               |
|           |           |          |                        | ·                        |               |
|           |           |          |                        |                          | ·             |
|           |           |          |                        | ·                        |               |
|           |           |          |                        |                          |               |
|           |           |          |                        |                          | ·             |
|           |           |          |                        |                          |               |
|           | :         |          |                        |                          |               |
|           |           |          |                        |                          |               |
|           |           |          | ·                      |                          |               |
|           |           |          |                        |                          | ·             |
| 1         |           |          |                        | ·                        |               |
| $\dashv$  |           |          |                        |                          |               |
| $\exists$ |           |          |                        |                          |               |

#### Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17471

Wet Chemistry

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 4, 2007

**LDC Report Date:** 

September 27, 2007

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Tier 1

Laboratory:

**TestAmerica** 

Sample Delivery Group (SDG): IQF0211

Sample Identification

IRZMW001A\_WG060407\_0001

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Sulfate, EPA Method 376.2 for Sulfide, and EPA Method 415.1 for Total Organic Carbon.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

Initial calibration data were not reviewed for Tier 1.

#### b. Calibration Verification

Calibration verification data were not reviewed for Tier 1.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the preparation blanks.

#### IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

#### VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VII. Sample Result Verification

Raw data were not reviewed for this SDG.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility
Wet Chemistry - Data Qualification Summary - SDG IQF0211

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG IQF0211

No Sample Data Qualified in this SDG

### Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive Santa Ana, CA 92705

Attention: Clara Boeru

Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0211

Sampled: 06/04/07

Received: 06/04/07

#### **INORGANICS**

|                                    |                 |          | MDL   | Reporting | Sample | Dilution   | Date      | Date                   | Data       |
|------------------------------------|-----------------|----------|-------|-----------|--------|------------|-----------|------------------------|------------|
| Analyte                            | Method          | Batch    | Limit | Limit     | Result | Factor     | Extracted | Analyzed               | Qualifiers |
| Sample ID: IQF0211-01 (IRZMW001A_W | VG060407_0001 - | - Water) |       |           | Sample | d: 06/04/0 | 07        |                        |            |
| Reporting Units: mg/l              |                 |          |       |           |        |            |           |                        |            |
| Sulfate                            | EPA 300.0       | 7F04058  | 4.0   | 10        | 53     | 20         | 06/04/07  | 06/04/07               |            |
| Sulfide                            | EPA 376.2       | 7F05131  | 0.020 | 0.10      | 0.086  | 1          | 06/05/07  | 06/05/07               | J          |
| Total Organic Carbon               | EPA 415.1       | 7F05143  | 0.50  | 1.0       | 1.6    | 1          | 06/05/07  | 06/05/07               |            |
| Sample ID: 1QF0211-02 (IRZMW003A_V | VG060407_0001 - | Water)   |       |           | Sample | d: 06/04/0 | 07        |                        |            |
| Reporting Units: mg/l              |                 |          |       |           |        |            |           |                        |            |
| Sulfate                            | EPA 300.0       | 7F04058  | 4.0   | 10        | 77     | 20         | 06/04/07  | 06/04/07               |            |
| Sulfide                            | EPA 376.2       | 7F05131  | 0.020 | 0.10      | ND     | سلر        | 06/05/07  | 06/05/07               |            |
| Total Organic Carbon               | EPA 415.1       | 7F05143  | 0.50  | 1.0       | 14     | 1          | 06/05/07  | 06/05/07               |            |
| Sample ID: IQF0211-03 (IRZMW002A_V | VG060407_0001 - | · Water) |       |           | Sample | d: 06/04/0 | 07        |                        |            |
| Reporting Units: mg/l              |                 |          |       |           |        |            |           |                        |            |
| Sulfate                            | EPA 300.0       | 7F04058  | 4.0   | 10        | 63     | 20         | 06/04/07  | 06/04/07               |            |
| Sulfide                            | EPA 376.2       | 7F05131  | 0.020 | 0.10      | 0.10   | 1          | 06/05/07  | 06/05/07               | J          |
| Total Organic Carbon               | EPA 415.1       | 7F05143  | 0.50  | 1.0       | 2.2    | 1          | 06/05/07  | 06/05/07               |            |
| Sample ID: IQF0211-04 (IRZCMW003_V | VG060407_0001 - | Water)   |       |           | Sample | d: 06/04/0 | 07        |                        |            |
| Reporting Units: mg/l              |                 |          |       |           |        |            |           |                        |            |
| Sulfate                            | EPA 300.0       | 7F04058  | 4.0   | 10        | 120    | 20         | 06/04/07  | 06/04/07               |            |
| Sulfide                            | EPA 376.2       | 7F05131  | 0.020 | 0.10      | 0.060  | 1          | 06/05/07  | 06/05/07               | J          |
| Total Organie Carbon               | EPA 415.1       | 7F05143  | 0.50  | 1.0       | ND     | 1          | 06/05/07  | <del>- 06/05/07-</del> |            |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager K100407

| LDC #:<br>SDG #:<br>Labora |                                                                          | /ALI    |                                                    |          | <b>TENES</b><br>n 1 - Ti | S WORKSHEET<br>er 1                                    | Γ                                                             | Date: 9/24/ Page: of Page: of Page: My Reviewer: My 2nd Reviewer: My                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|--------------------------------------------------------------------------|---------|----------------------------------------------------|----------|--------------------------|--------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The sa                     | OD: Sulfate, (EPA Method mples listed below were re                      |         | ,                                                  |          |                          | •                                                      |                                                               | s are noted in attached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| validati                   | on findings worksheets.                                                  |         |                                                    |          |                          |                                                        |                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Validation Ar                                                            | ea      |                                                    | -        |                          |                                                        | nents                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.                         | Technical holding times                                                  | • . • . | 4                                                  | Sam      | pling dates              | 5: 6/4/07                                              |                                                               | and a second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lla.                       | Initial calibration                                                      |         | N                                                  |          | ser i i i i i i i i i i  |                                                        | and a great of the second                                     | The second of th |
| llb.                       | Calibration verification                                                 |         | N                                                  |          |                          |                                                        |                                                               | i y companya wa companya maka maka maka maka maka maka maka ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <br>                       | Blanks                                                                   |         | A                                                  |          |                          |                                                        |                                                               | A CONTRACTOR OF THE STATE OF TH |
| lVa.                       | Matrix Spike/(Matrix Spike) Dup                                          | licates | A                                                  | 1        | MG/190                   | hum drent                                              |                                                               | since the same since above the bound of the control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IVb.                       | Laboratory control samples                                               |         | A                                                  | L        | وح                       |                                                        | 2 N. W. C. W. A. A. P. C. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V.                         |                                                                          |         |                                                    |          |                          |                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI.                        | Overall assessment of data                                               |         | A                                                  |          |                          |                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII.                       | Field duplicates                                                         | **      | N N                                                |          |                          |                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII                       | Field blanks                                                             |         |                                                    |          |                          | , , , , , , , , , , , , , , , , , , ,                  | ************                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note:<br>Validated         | A = Acceptable N = Not provided/applicable SW = See worksheet d Samples: |         | ND = No compoun<br>R = Rinsate<br>FB = Field blank | nds dete | ected                    | D = Duplicate<br>TB = Trip blank<br>EB = Equipment bla | ınk                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 11                       | RZMW001A_WG060407_0001                                                   | 11      |                                                    |          | 21                       |                                                        | 31                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                          | MB                                                                       | 12      |                                                    |          | 22                       |                                                        | 32                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                          |                                                                          | 13      |                                                    |          | 23                       |                                                        | 33                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                          |                                                                          | 14      |                                                    |          | 24                       |                                                        | 34                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                          |                                                                          | 15      |                                                    |          | 25                       |                                                        | 35                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                          |                                                                          | 16      |                                                    |          | 26                       |                                                        | 36                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                          |                                                                          | 17      |                                                    |          | 27                       |                                                        | 37                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                          |                                                                          | 18      |                                                    |          | 28                       |                                                        | 38                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                          |                                                                          | 19      |                                                    |          | 29                       |                                                        | 39                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

30

Notes:

| LDC #:_ | 1747 | 186 |
|---------|------|-----|
| SDG #:_ |      |     |

#### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

| Page:_        | of |   |
|---------------|----|---|
| Reviewer:_    | my |   |
| 2nd reviewer: | 1  | _ |

All circled methods are applicable to each sample.

| Sample ID | Parameter                                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------|
|           | PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOO CROO CO                                                                      |
|           | ph TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+                                                                         |
|           | ph tds ci f No <sub>3</sub> No <sub>2</sub> So <sub>4</sub> Po <sub>4</sub> Alk Cn' NH <sub>3</sub> TKN toc CR <sup>6+</sup> |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>8+</sup>  |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN' NH <sub>3</sub> TKN TOC CR <sup>6+</sup> |
|           | ph tds ci f No <sub>3</sub> No <sub>2</sub> So <sub>4</sub> Po <sub>4</sub> Alk Cn' Nh <sub>3</sub> TKN toc CR <sup>6+</sup> |
|           | ph TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN' NH <sub>3</sub> TKN TOC CR <sup>6+</sup> |
|           | ph TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CR6+                                                                          |
|           | ph tds ci f No3 No2 SO4 PO4 ALK CN NH3 TKN TOC CR6+                                                                          |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN' NH <sub>3</sub> TKN TOC CR <sup>6+</sup> |
|           | pH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CRO+                                                                          |
|           | ph tds ci f no, no, so, po, alk cn nh, tkn toc cr                                                                            |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>6+</sup>  |
|           | ph tds cif No3 No2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                           |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>8+</sup>  |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>6+</sup>  |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN' NH <sub>3</sub> TKN TOC CR <sup>8+</sup> |
|           | ph tds ci f No <sub>3</sub> No <sub>2</sub> So <sub>4</sub> Po <sub>4</sub> Alk cn NH <sub>3</sub> TKN toc CR <sup>6+</sup>  |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>6+</sup>  |
|           | pH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN' NH <sub>3</sub> TKN TOC CR <sup>6+</sup> |
|           | ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                          |
|           | PH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>6+</sup>  |
|           | ph tds ci f No3 No2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                          |
|           | pH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                         |
|           | ph TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CRO+                                                                         |

| Comments: | 275 |  |
|-----------|-----|--|
|           |     |  |
|           |     |  |
|           |     |  |

METHODS.6

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 15, 2007

LDC Report Date:

September 27, 2007

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Tier 2

Laboratory:

**TestAmerica** 

Sample Delivery Group (SDG): IQF0296

Sample Identification

IRZMW004\_WG060507\_0001

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Sulfate, EPA Method 376.2 for Sulfide, and EPA Method 415.1 for Total Organic Carbon.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

All criteria for the initial calibration of each method were met.

#### b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

#### IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

| Spike ID<br>(Associated<br>Samples)                     | Analyte | MS (%R)<br>(Limits) | MSD (%R)<br>(Limits) | RPD<br>(Limits) | Flag                                    | A or P |
|---------------------------------------------------------|---------|---------------------|----------------------|-----------------|-----------------------------------------|--------|
| IRZCMW001_WG060507_0001<br>(All samples in SDG IQF0296) | Sulfide | 57 (70-130)         | 52 (70-130)          | -               | J (all detects)<br>UJ (all non-detects) | А      |

#### V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

#### VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VII. Sample Result Verification

Raw data were not reviewed for this SDG.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### X. Field Blanks

No field blanks were identified in this SDG.

#### Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Data Qualification Summary - SDG IQF0296

| SDG     | Sample                 | Analyte | Flag                                    | A or P | Reason                                    |
|---------|------------------------|---------|-----------------------------------------|--------|-------------------------------------------|
| IQF0296 | IRZMW004_WG060507_0001 | Sulfide | J (all detects)<br>UJ (all non-detects) | А      | Matrix spike/Matrix spike duplicates (%R) |

Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG IQF0296

No Sample Data Qualified in this SDG



17461 Derian Avenue. Suite 100, Irvine, CA .92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0296

Sampled: 06/05/07

Received: 06/05/07

#### **INORGANICS**

| Analyte                                                     | Method                      | Batch   | MDL<br>Limit | Reporting<br>Limit                    | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted     | Date<br>Analyzed     | Data<br>Qualifiers |
|-------------------------------------------------------------|-----------------------------|---------|--------------|---------------------------------------|------------------|--------------------|-----------------------|----------------------|--------------------|
| Sample ID: IQF0296-01 (TRZMW004_W                           | G060507_0001 - W            | /ater)  |              |                                       | Sample           | d: 06/05/0         | 97                    |                      |                    |
| Reporting Units: mg/l                                       |                             |         |              |                                       |                  |                    |                       |                      |                    |
| Sulfate                                                     | EPA 300.0                   | 7F06041 | 2.0          | 5.0                                   | 35               | _ 10               | 06/06/07              | 06/06/07             |                    |
| Sulfide                                                     | EPA 376.2                   | 7F05132 | 0.020        | 0.10                                  | 0.061            | 3 1                | 06/05/07              | 06/05/07             | J                  |
| Total Organic Carbon                                        | EPA 415.1                   | 7F06140 | 0.50         | 1.0                                   | ND               | 1                  | 06/06/07              | 06/06/07             |                    |
| Sample ID: 1QF0296-02 (FWC002_WG06                          | <del>9507_0001 - Wate</del> | r)      |              | · · · · · · · · · · · · · · · · · · · | Sample           | a: 06/05/0         | 07                    |                      |                    |
| Reporting Units: mg/l                                       |                             |         |              |                                       |                  |                    |                       |                      |                    |
| Total Organic Carbon                                        | EPA 415.1                   | 7F06140 | 0.50         | 1.0                                   | ND               | 1                  | <del>_06</del> 706/07 | 06/06/07             |                    |
| Sample ID: IQF0296-03 (IWC001_WG06                          | 0507_0001 - Wate            | r)      |              |                                       | Sample           | d: 06/05/0         | 97                    |                      |                    |
| Reporting Units: mg/l                                       |                             |         |              |                                       |                  |                    |                       |                      |                    |
| Total Organic Carbon                                        | EPA 415.1                   | 7F06140 | 0.50         | 1.0                                   | ND               | 1                  | 06/06/07              | 06/06/07             |                    |
| Sample ID: IQF0296-04 (IRZCMW001_V                          | VG060507_0001 -             | Water)  |              |                                       | Sample           | d: 06/05/0         | 97                    |                      |                    |
| Reporting Units: mg/l                                       |                             |         |              |                                       |                  |                    |                       |                      |                    |
| Sulfate                                                     | EPA 300.0                   | 7F06041 | 2.0          | 5.0                                   | 33               | 10                 | 06/06/07              | 06/06/07             |                    |
| Sulfide                                                     | EPA 376.2                   | 7F05132 | 0.020        | 0.10                                  | 0.092            | 1                  | 06/05/07              | 06/05/07             | M2, J              |
| Total Organic Carbon                                        | EPA 415.1                   | 7F06140 | 0.50         | 1.0                                   | ND               | 1                  | 06/06/07              | 06/06/07             |                    |
| Sample ID: IQF0296-08 (EWC002_WG06<br>Reporting Units: mg/l | 0507_0001 - Wate            | er)     |              |                                       | Sample           | d: 06/05/0         | 07                    |                      |                    |
| Total Organic Carbon                                        | EPA 415.1                   | 7F06140 | -0.50        | 1:0                                   | ND               | 1                  | 06/06/07              | <del>06/06/0</del> 7 |                    |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager D100407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0296 <Page 18 of 54>

| LDC #<br>SDG #<br>Labora |                                                                          | VALI     | DATION                          | N COMF<br>EPA Re |           |          |         | DRKSHEET                                       |                                         | Date: 9/x4/ Page: 1 of 1 Reviewer: 4 2nd Reviewer: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|--------------------------------------------------------------------------|----------|---------------------------------|------------------|-----------|----------|---------|------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | <b>OD:</b> Sulfate, (EPA Metho                                           |          |                                 |                  |           |          |         |                                                | ·                                       | s are noted in attached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| validat                  | ion findings worksheets.                                                 |          | d for cac                       |                  | Ollowing  | y valid  | ation 6 | ii cas. Validation                             | midnig                                  | s are noted in attached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | Validation A                                                             | rea      |                                 |                  |           |          |         | Commer                                         | nts                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.                       | Technical holding times                                                  |          | -                               | A                | Samplin   | ng dates | : 61    | 5/.7                                           | 1 · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lla                      | Initial calibration                                                      |          |                                 | A                |           |          |         |                                                |                                         | The second secon |
| llb.                     | Calibration verification                                                 |          |                                 | A                |           |          |         | ***************************************        |                                         | M. Andrews December Commission Commission (Commission Commission C |
| 111.                     | Blanks                                                                   |          |                                 | A                |           |          | -       |                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IVa.                     | Matrix Spike/(Matrix Spike) Du                                           | plicates |                                 | 5W               | . 50.79   |          |         |                                                |                                         | and the street and the second  |
| IVb.                     | Laboratory control samples                                               |          |                                 | A                | Les       | <br>>    |         |                                                |                                         | The second secon |
| V.                       | Sample result verification                                               |          |                                 | N                |           |          |         |                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI.                      | Overall assessment of data                                               |          |                                 | A                |           | ****     |         | ·                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII.                     | Field duplicates                                                         | ٠        |                                 | N                |           |          |         |                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII                     | Field blanks                                                             |          |                                 | $\sim$           |           |          |         |                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note:<br>Validate        | A = Acceptable N = Not provided/applicable SW = See worksheet d Samples: |          | ND = No<br>R = Rins<br>FB = Fie |                  | s detecte | d        | TB:     | Duplicate<br>= Trip blank<br>= Equipment blank |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1                      | RZMW004_WG060507_0001                                                    | 11       |                                 |                  |           | 21       |         |                                                | 31                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                        | MB                                                                       | 12       |                                 |                  |           | 22       |         | · · · · · · · · · · · · · · · · · · ·          | 32                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | 117                                                                      | 13       |                                 |                  |           | 23       |         |                                                | 33                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3<br>4<br>5              |                                                                          | 14       |                                 |                  |           | 24       |         |                                                | 34                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                        |                                                                          | 15       |                                 |                  |           | 25       |         |                                                | 35                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                        |                                                                          | 16       |                                 |                  |           | 26       |         |                                                | 36                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                        |                                                                          | 17       |                                 |                  |           | 27       |         |                                                | 37                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                        |                                                                          | 18       |                                 |                  |           | 28       |         |                                                | 29                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Notes:\_

| LDC #:_ | 1747 | 1B/6  |
|---------|------|-------|
| SDG #:_ | 500  | Love~ |

#### VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

| Page:_        | of |
|---------------|----|
| Reviewer:     | My |
| 2nd reviewer: | -1 |

All circled methods are applicable to each sample.

| Sample ID | Parameter                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|
| 1.        | PH TDS CI F NO, NO, SO PO, ALK CN NH, TKN TOO CRS+ S                                                                        |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                        |
|           | PH TDS CIF NO, NO, SO, PO, ALK CN'NH, TKN TOC CR®+                                                                          |
|           | ph TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CRO+                                                                        |
|           | ph tds cif no, no, so, po, alk cn nh, tkn toc cr                                                                            |
|           | ph tds cif NO $_3$ NO $_2$ SO $_4$ PO $_4$ ALK CN NH $_3$ TKN TOC CR $^{6+}$                                                |
|           | ph TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR <sup>6+</sup> |
|           | PH TDS CIF NO, NO, SO, PO, ALK CN' NH, TKN TOC CR8+                                                                         |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                         |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                         |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR®+                                                                         |
|           | ph tds cif no3 no2 so4 po4 alk cn nh3 tkn toc cr6+                                                                          |
|           | ph TDS CIF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                          |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CNT NH3 TKN TOC CR8+                                                                         |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                         |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR®+                                                                         |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                         |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                          |
|           | ph tds cif no3 no2 so4 po4 alk cn nh3 tkn toc cr8+                                                                          |
|           | ph tds cif no, no, so, po, alk cn nh, tkn toc cr°+                                                                          |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                         |
|           | PH TDS CLF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                          |
|           | PH TDS CIF NO, NO, SO, PO, ALK CN' NH, TKN TOC CR®+                                                                         |
|           | PH TDS CIF NO, NO, SO, PO, ALK CN' NH, TKN TOC CR®+                                                                         |
|           | ph TDS CIF NO, NO, SO, PO, ALK CN' NH, TKN TOC CRO+                                                                         |

| Comments: | < ** |  |
|-----------|------|--|
|           |      |  |
|           |      |  |
|           |      |  |

METHODS.6

1747/136 SDG #: LDC #:

## VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: Reviewer: 2nd Reviewer:

METHOD: Inorganics, EPA Method\_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

\*\*Note: Note: Not A N N/A

Were matrix spike percent recoveries (%R) within the control limits of 75-128? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and <35% for soil samples?

LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recaiculation Worksheet for recalculations.

| *         | OI OSW/SW    | Watrlx          | <b>A</b> | Anslyta | MS<br>KBerovery | MSD | (a) (a) (a) | A Land               |                |
|-----------|--------------|-----------------|----------|---------|-----------------|-----|-------------|----------------------|----------------|
| L         | TRYCHINGO IN | Wordports 1 Las | 10.7     | 0       | 4.7             | 1   |             | Associated Salliples | Jualifications |
| $\perp$   |              | 7               | 200      | 7       | \               | 7   |             | H                    | D/24/D         |
| I         |              |                 | 1        |         |                 |     |             |                      |                |
| Ι         |              |                 |          |         |                 |     |             |                      |                |
| $\Box$    |              |                 |          |         |                 |     |             |                      |                |
| $\Box$    |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
| _         |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
| $\square$ |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
| $\perp$   |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
| S         | Comments:    |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |
|           |              |                 |          |         |                 |     |             |                      |                |

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 7, 2007

LDC Report Date:

September 27, 2007

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

Tier 3

Laboratory:

**TestAmerica** 

Sample Delivery Group (SDG): IQF0673

Sample Identification

IRZMW002B\_WG060707\_0001

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 300.0 for Sulfate, EPA Method 376.2 for Sulfide, and EPA Method 415.1 for Total Organic Carbon.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

All criteria for the initial calibration of each method were met.

#### b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks.

#### IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

#### VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VII. Sample Result Verification

All sample result verifications were acceptable.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Data Qualification Summary - SDG IQF0673

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG IQF0673

No Sample Data Qualified in this SDG



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TAIT Environmental/Boeing

701 N. Parkcenter Drive

Santa Ana, CA 92705 Attention: Clara Boeru Project ID: Boeing C-6 Torrance

EM2727 (Building 2)

Report Number: IQF0673

Sampled: 06/07/07

Received: 06/07/07

#### **INORGANICS**

| Analyte                                                | Method                       | Batch           | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed     | Data<br>Qualifiers |
|--------------------------------------------------------|------------------------------|-----------------|--------------|--------------------|-------------------|--------------------|-------------------|----------------------|--------------------|
| Sample ID: IQF0673-01 (IRZMW002B_V                     | VG060707 <u></u> 0001 -      | Water)          |              |                    | Sample            | d: 06/07/          | 07                |                      |                    |
| Reporting Units: mg/l                                  |                              |                 |              |                    |                   |                    |                   |                      |                    |
| Sulfate                                                | EPA 300.0                    | 7F08059         | 2.0          | 5.0                | 75                | 10                 | 06/08/07          | 06/08/07             |                    |
| Sulfide                                                | EPA 376.2                    | 7F 13102        | 0.020        | 0.10               | ND                | 1                  | 06/13/07          | 06/14/07             |                    |
| Total Organic Carbon                                   | EPA 415.1                    | <b>7F</b> 11122 | 0.50         | 1.0                | 3.8               | 1                  | 06/11/07          | 06/11/07             |                    |
| Sample ID: IQF0673-02 (IRZB0095_WG0                    | <del>)60707_0001 - W</del> a | iter)           |              |                    | Sample            | d: 06/07/          | )7                |                      |                    |
| Reporting Units: mg/l                                  |                              |                 |              |                    |                   |                    |                   |                      |                    |
| Sulfate                                                | EPA 300.0                    | 7F08059         | 2.0          | 5.0                | 13                | 10                 | 06/08/07          | 06/08/07             |                    |
| Sulfide                                                | EPA 376.2                    | 7F13102         | 0.20         | 1.0                | 2.7               | 10                 | 06/13/07          | 06/14/07             |                    |
| Total Organic Carbon                                   | EPA 415.1                    | <b>7F11122</b>  | 5.0          | 10                 | 14                | 10                 | 06/11/07          | 06/11/07             |                    |
| Sample ID: IQF0673-03 (IRZB0081_WG060707_0001 - Water) |                              |                 |              |                    | Sampled: 06/07/07 |                    |                   |                      |                    |
| Reporting Units: mg/l                                  | TD 4 200 0                   | 7F08059         | 2.0          | £0.                | 51                | 10                 | 06/08/07          | 06/08/07             |                    |
| Sulfate                                                | EPA 300.0<br>EPA 376.2       | 7F13102         | 2.0<br>0.20  | 5.0                | 2.5               | 10                 | 06/08/07          | 06/08/07             |                    |
| Sulfide                                                |                              |                 |              | 5.0                | 2.5<br>19         | 5                  | 06/13/07          | 06/11/07             |                    |
| Total Organic Carbon                                   | EPA 415.1                    | 7F11122         | 2.5          | 3.0                | 19                | 3                  | 00/11/07          | 00/11/07             |                    |
| Sample ID: IQF0673-04 (IRZCMW002_V                     | VG060707_0001 -              | Water)          |              |                    | Sample            | d: 06/07/0         | 7                 |                      |                    |
| Reporting Units: mg/l                                  |                              |                 |              |                    |                   |                    |                   |                      |                    |
| Sulfate                                                | EPA 300.0                    | 7F08059         | 0.20         | 0.50               | 1.8               | 1                  | 06/08/07          | 06/08/07             |                    |
| Sulfide                                                | EPA 376.2                    | 7F13102         | 0.020        | 0.10               | 0.17              | 1                  | 06/13/07          | 06/14/07             |                    |
| Total Organic Carbon                                   | EPA 415.1                    | 7F11122         | 0.50         | 1.0                | 25                | 1                  | 06/11/07          | 06/11/07             |                    |
| Sample ID: IQF0673-07 (CMW026_WG060707_0001 - Water)   |                              |                 |              |                    | Sample            | :d: 06/07/0        | 97                |                      |                    |
| Reporting Units: mg/l                                  | EPA 300.0                    | 7F08059         | 2.0          | 5.0                | 29                | 10                 | 06/08/07          | 06/08/07             |                    |
| Sulfate                                                |                              |                 | 0.020        |                    | 0.087             |                    | 06/08/07          | 06/08/07             | J                  |
| Sulfide                                                | EPA 376.2                    | 7F13102         |              | 0.10               | 9.8               | 1                  |                   |                      | ,                  |
| Total Organic Carbon                                   | EPA 415.1                    | 7F11122         | 0.50         | 1.0                | <del>- 7.0</del>  |                    | 06/11/07          | <del>06/11/</del> 07 |                    |

TestAmerica - Irvine, CA

Nicholas Marz Project Manager rt 100407

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQF0673 <Page 28 of 42>

| LDC #<br>SDG #<br>Labora | VALIDATION COMPLETENESS WORKSHEET  IQF0673  Ory: Test America  VALIDATION COMPLETENESS WORKSHEET  EPA Region 1 - Tier 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                       |           |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2r                                              | Date: 9   1   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|-----------|---------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METH                     | OD: Sulfate, (EPA Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300.0    | ), Sulfid                             | e (EPA M  | lethod 376.2                                | ), TOC (EF                               | PA Method 415.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | amples listed below were retion findings worksheets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eviewe   | d for ea                              | ch of the | following val                               | dation are                               | as. Validation fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndings a                                        | ire noted in attached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | Validation Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ea       |                                       | 1 - 13    |                                             |                                          | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *, , * , . *<br><b>S</b>                        | Thus the control of the service of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I.                       | Technical holding times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ** *     |                                       | Δ         | Sampling da                                 | es: 6/7/                                 | 01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| lla.                     | Initial calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                       | A         |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************          | and the second of the second o |
| llb.                     | Calibration verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | **** * **** *****                     | A         | - 1. T. | ramana i como e                          | The state of the s | ng sang ming languages a                        | er gerekant an de gelek i Maksant Andrew er operarie i kanada i gelek er er e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| III.                     | Blanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | *** - ** *                            | A         | to experience and the control of the        | PERSONAL WAY OF A CO.                    | include adaptive way to be provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *** *** * * * * * *                             | The state of the s |
| IVa.                     | Matrix Spike/(Matrix Spike) Dup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | olicates |                                       | A         | 195/m                                       | in Uw                                    | e client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14 W - 1744 - 1744 - 17                         | n in the constitution of the constitution of the constitution of the second of the constitution of the con |
| IVb.                     | e complexe entergrees in the complex of the complex |          | Δ                                     | Las       | **********                                  |                                          | marter me et e le tarane e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er ander e terme er reproduktiv a meter war der |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V.                       | Sample result verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       | A         |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                       | A         |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII.                     | Field duplicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                       | W         |                                             | 14 m · · · · · · · · · · · · · · · · · · | and the best of a magnetic of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *********                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII                     | Field blanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                       | ··· N     |                                             |                                          | The state of the s | an agrande i san                                | . A surface of the su |
| Note:                    | A = Acceptable N = Not provided/applicable SW = See worksheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | R = Rin                               |           | ds detected                                 | TB = T                                   | iplicate<br>rip blank<br>quipment blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Validate                 | ed Samples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                       |           |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                        | IRZMW002B_WG060707_0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11       |                                       |           | 21                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                        | Mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12       |                                       |           | 22                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13       |                                       |           | 23                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14       |                                       |           | 24                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15       |                                       |           | 25                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16       |                                       |           | 26                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17       |                                       |           | 27                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18       |                                       |           | 28                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19       | ··· · · · · · · · · · · · · · · · · · |           | 29                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       |                                       |           | 30                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Method:Inorganics (EPA Method See Coye)

| Method:Inorganics (EPA Method See Corper                                                                                                                                                                                                                                                                           |          | <del>,</del> |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                                                                                                                                                                                    | Yes      | No           | NA      | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I. Technical holding times                                                                                                                                                                                                                                                                                         |          |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All technical holding times were met.                                                                                                                                                                                                                                                                              | 1        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Coolor tomporaturo critoria was met.                                                                                                                                                                                                                                                                               | 1        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| II.Calibration                                                                                                                                                                                                                                                                                                     |          |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all instruments calibrated daily, each set-up time?                                                                                                                                                                                                                                                           | 1        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the proper number of standards used?                                                                                                                                                                                                                                                                          | 1        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all initial calibration correlation coefficients > 0.995?                                                                                                                                                                                                                                                     | /        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?                                                                                                                                                                                                                         | /        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were titrant checks performed as required? (Level IV only)                                                                                                                                                                                                                                                         |          |              | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were balance checks performed as required? (Level IV only)                                                                                                                                                                                                                                                         |          |              | /       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| III: Blanksi (1975)                                                                                                                                                                                                                                                                                                |          |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank associated with every sample in this SDG?                                                                                                                                                                                                                                                       | <u>v</u> |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                                                                                                                                                     |          | 1            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IV Matrix spike/Matrix spike duplicates and Duplicates                                                                                                                                                                                                                                                             |          |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.                                                                                                                                        | · /      |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.                                                                                        | J        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the MS/MSD or duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of $\leq$ CRDL( $\leq$ 2X CRDL for soil) was used for samples that were $\leq$ 5X the CRDL, including when only one of the duplicate sample values were $\leq$ 5X the CRDL. | /        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V Laboratory control samples                                                                                                                                                                                                                                                                                       |          |              |         | CONTROL CONTRO |
| Was an LCS anaylzed for this SDG?                                                                                                                                                                                                                                                                                  | 1        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was an LCS analyzed per extraction batch?                                                                                                                                                                                                                                                                          | 1        |              | $\perp$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?                                                                                                                                                                                | _        |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI. Regional Quality Assurance and Quality Control                                                                                                                                                                                                                                                                 |          |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were performance evaluation (PE) samples performed?                                                                                                                                                                                                                                                                |          |              | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the performance evaluation (PF) samples within the acceptance limits?                                                                                                                                                                                                                                         |          |              | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



#### **VALIDATION FINDINGS CHECKLIST**

|     | Page:_    | Lof Y  |
|-----|-----------|--------|
|     | Reviewer: | My     |
| 2nd | Reviewer: | N      |
|     | -         | $\neg$ |

| Validation Area                                                                                                | Yes        | No  | NA | Findings/Comments                   |
|----------------------------------------------------------------------------------------------------------------|------------|-----|----|-------------------------------------|
| VII. Sample Result Verification                                                                                |            |     |    | 的最高的最高的最大的最大的。<br>的最高的最高的最高的最高的最高的。 |
| Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?    | 1          |     |    |                                     |
| Were detection limits < RL?                                                                                    | <u>س</u> ا |     |    |                                     |
| VIII. Overall assessment of data                                                                               |            |     |    |                                     |
| Overall assessment of data was found to be acceptable.                                                         | /          |     |    |                                     |
| IX Field duplicates                                                                                            |            |     |    |                                     |
| Field duplicate pairs were identified in this SDG.                                                             |            | 1/2 |    |                                     |
| Target analytes were detected in the field duplicates.                                                         |            |     |    |                                     |
| X. Field blanks e same set a set |            |     |    |                                     |
| Field blanks were identified in this SDG.                                                                      |            | 1   | /  |                                     |
| Target analytes were detected in the field blanks.                                                             |            |     | 7  |                                     |

| LDC #:_ | 1747 | 106  |
|---------|------|------|
| SDG #:_ | See  | Love |

## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

| Page:_        | of | L |
|---------------|----|---|
| Reviewer:     | My |   |
| 2nd reviewer: | 1  | _ |
|               |    |   |

All circled methods are applicable to each sample.

| Sample ID | Parameter                                                                                                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| <u>_t</u> | PH TDS CIF NO, NO, SO, PO, ALK CN NH, TKN TOO CRO STO                                                                                    |
|           | PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR®+                                                                                     |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                                      |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CRO+                                                                                     |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CRO+                                                                                      |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                                      |
|           | PH TDS CI F NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN <sup>-</sup> NH <sub>3</sub> TKN TOC CR <sup>6+</sup> |
|           | PH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CRO+                                                                                      |
|           | PH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CROT                                                                                      |
|           | PH TDS CIF NO <sub>3</sub> NO <sub>2</sub> SO <sub>4</sub> PO <sub>4</sub> ALK CN NH <sub>3</sub> TKN TOC CR®+                           |
|           | PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CRO+                                                                                     |
|           | PH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CR8+                                                                                      |
|           | PH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CRO+                                                                                      |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR®+                                                                                       |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR®+                                                                                       |
|           | PH TDS CIF NO3 NO2 SO4 PO4 ALK CNT NH3 TKN TOC CR®+                                                                                      |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                                      |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                                      |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR®+                                                                                     |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR®+                                                                                     |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CNT NH3 TKN TOC CROT                                                                                     |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                                      |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN' NH3 TKN TOC CR8+                                                                                     |
|           | PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+                                                                                      |
|           | PH TDS CLF NO, NO, SO, PO, ALK CN' NH, TKN TOC CRO+                                                                                      |

| Comments: | ** |  |
|-----------|----|--|
|           |    |  |
|           |    |  |
|           |    |  |

METHODS.6

1747/ch LDC#:

# Initial and Continuing Calibration Calculation Verification Validatin Findings Worksheet

2nd Reviewer: Page:\_\_\_( of \_\_ Reviewer: 1

Method: Inorganics, Method

The same

was recalculated. Calibration date:  $\frac{\xi/31/v7}{}$ The correlation coefficient (r) for the calibration of

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

Where,

Found = concentration of each analyte measured in the analysis of the ICV or CCV solution

True = concentration of each analyte in the ICV or CCV source

|                                                         |         |          |            |            | Recalculated | Reported | Acceptable |
|---------------------------------------------------------|---------|----------|------------|------------|--------------|----------|------------|
| Type of analysis                                        | Analyte | Standard | conc. mg/L | Area       | r or r²      | r or r²  | (Y/N)      |
| Initial calibration                                     |         | s1       | 0          | 237.5      |              |          |            |
| Calibration verification                                | S04     | s2       | 0.4        | 37344.68   | 0.999994     | 0.999994 |            |
|                                                         |         | કરી      | 1          | 87640.1    |              |          |            |
|                                                         |         | s4       | 10         | 896947.45  |              |          | >          |
|                                                         |         | S5       | 20         | 1842696.5  |              |          | _          |
|                                                         |         | 9S       | 40         | 3852412.54 |              |          |            |
|                                                         |         | s7       | 09         | 6090482.7  |              |          |            |
| Calibration verification                                | \$85    | ۶        | (1,55      |            | 47.8         | NR       | >          |
| $\mathcal{C}_{\mathcal{A}}$<br>Calibration verification | \$      | 0.300    | 8.4.0      |            | (-20)        | 7        |            |
| رمی<br>Calibration verification                         | Tot     | ા        | (0.7)      |            | (°)          | P        | 7          |

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

1741/56 LDC #: SDG #:

# VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

2nd Reviewer: Page: Reviewer:\_

METHOD: Inorganics, Method \_

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

Where %R = Found x 100

Found ==

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). concentration of each analyte in the source.

True ≕

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD =  $\frac{|S-D|}{(S+D)/2}$  x 100 Where,

|| || || ()

Original sample concentration Duplicate sample concentration

|           |                           |          |                      |                     | Recalculated | Reported |                     |
|-----------|---------------------------|----------|----------------------|---------------------|--------------|----------|---------------------|
| Sample ID | Type of Analysis          | Element  | Found / S<br>(units) | True / D<br>(units) | %R / RPD     | %R/RPD   | Acceptable<br>(Y/N) |
| 72        | Laboratory control sample | ナら       | 8+9,6                | 9)                  | 16           | 96       | >                   |
| 中です。十四    | Matrix spike sample       | 7        | (SSR-SR)             | 4                   | 36           | 76       |                     |
| JOF 1015  | Duplicate sample          | <b>√</b> | 0,46                 | 0,44                | 4            | 4        | 3                   |

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

TOTCLC.6

| LDC #: 1947 cb                               | VALIDATION FINDINGS WORKSHEET                       | Page: /_of_/_                        | _ |
|----------------------------------------------|-----------------------------------------------------|--------------------------------------|---|
| SDG #: Cu www                                | Sample Calculation Verification                     | Reviewer: MH                         | _ |
| <del></del>                                  |                                                     | 2nd reviewer:                        | _ |
| METHOD: Inorganics, Method _                 | See com                                             |                                      |   |
|                                              | or all questions answered "N". Not applicable quest | tions are identified as "N/A".       |   |
| <u>M N N/A</u> Have results bee              | n reported and calculated correctly?                |                                      |   |
| X N N/A Are results within Are all detection | the calibrated range of the instruments?            |                                      |   |
| <u>V)N N/A</u> Are all detection             | limits below the CRQL?                              |                                      |   |
| Compound (analyte) results for               | 1                                                   | reported with a positive detect were | е |
| recalculated and verified using th           | e following equation:                               |                                      |   |

Concentration =

To  $C = \frac{A + 166.08}{60 + 14}$ Recalculation:  $T_0 C = \frac{71 + 1 + 166.08}{60 + 14} = 3.83 \text{ mg/L}$ 

| #       | Sample ID | Analyte    | Reported<br>Concentration | Calculated Concentration | Acceptable<br>(Y/N) |
|---------|-----------|------------|---------------------------|--------------------------|---------------------|
| $\prod$ |           | Soft       | 75                        | 15                       | Y                   |
|         |           | 504<br>Tol | 3.8                       | 3.8                      | ン                   |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            | <u> </u>                  |                          |                     |
|         |           |            |                           |                          |                     |
|         |           |            |                           |                          |                     |

| Note: | <br> | <br> | <br> | <br> |
|-------|------|------|------|------|
|       |      |      |      |      |
|       |      |      |      |      |

RECALC.6

### Boeing Realty Corp., Bldg C-6 Facility Data Validation Reports LDC# 17471

**Dissolved Gasses** 

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 4, 2007

LDC Report Date:

October 5, 2007

Matrix:

Water

Parameters:

Dissolved Gases

Validation Level:

Tier 1

Laboratory:

Test America/Air Technology Laboratories, Inc.

Sample Delivery Group (SDG): IQF0211/A7060503

Sample Identification

IRZMW001A\_WG060407\_0001

### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per Method RSK-175 for Dissolved Gases.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

### a. Initial Calibration

Initial calibration data were not reviewed for Tier 1.

### b. Calibration Verification

Calibration verification data were not reviewed for Tier 1.

### III. Blanks

Method blanks were performed at the required frequency. No dissolved gas contaminants were found in the method blanks.

### IV. Accuracy and Precision Data

### a. Surrogate Recovery

Not required by the method.

### b. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### c. Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### V. Target Compound Identification

Raw data were not reviewed for this SDG.

### VI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

### VII. System Performance

Raw data were not reviewed for this SDG.

### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### IX. Field Duplicates

No field duplicates were identified in this SDG.

### X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility
Dissolved Gases - Data Qualification Summary - SDG IQF0211/A7060503

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Dissolved Gases - Laboratory Blank Data Qualification Summary - SDG IQF0211/A7060503

No Sample Data Qualified in this SDG

Client:

TestAmerica

Attn:

Nicholas Marz

Page 2 of 3 A7060503

Client's Project:

IQF0211

Date Received:

6/5/2007

Matrix: Water
Units: ug/L

|             |           |             | solved Ga |             |          |             | SKSOP-1            | 75          |         |      |
|-------------|-----------|-------------|-----------|-------------|----------|-------------|--------------------|-------------|---------|------|
|             | IRZ       | MWDO        | IA_WG     | 06040       | 7000     |             |                    | ,           |         | <br> |
| L           | ab No.:   | A706        | 0503-01   | A706        | 0503-02- | A706        | <del>0503-03</del> | A706        | 0503-04 |      |
| Client Samp | ole I.D.: | IQF(        | 0211-01   | IQF         | 0211-02  | 1QF(        | 211-03             | IQF         | 0211-04 |      |
| Date Sa     | ampled:   | 6/4         | /2007     | 6/4         | /2007    | 6/4         | /2007              | 814         | /2007   |      |
| Date Ar     | alyzed:   | 6/1.        | 3/2007    | 6/1.        | 3/2007   | 6/1:        | 3/2007             | 6/1:        | 3/2007  |      |
| Analyst l   | Initials: |             | DT        |             | DT       | 1           | DT /               | ]           | DT      |      |
| Data File:  |           | 13]         | un005     | 13          | jun006   | 13j         | un007              | 13          | jun008  |      |
| QC          | Batch:    | 070613GC8A1 |           | 070613GC8A1 |          | 070613GC8A1 |                    | 070613GC8A1 |         |      |
| Dilution    | Factor:   |             | 1.0       |             | 1.0      |             | 1.0                |             | 1.0     |      |
| ANALYTE     | PQL       | RL          | Results   | RL          | Results  | RL          | Results            | RL          | Results |      |
| Methane     | 1.0       | 1.0         | 10,000    | 1.0         | 7,200    | 1.0         | 5,000              | 1.0         | 3,700   |      |
| Ethane      | 2.0       | 2.0         | ND        | 2.0         | 6.2      | 2.0         | ND                 | 2.0         | ND      |      |
| Ethylene    | 3.0       | 3.0         | ND        | 3.0         | 7.8      | 3.0         | <del>- 3.1</del>   | 3.0         | 4.3     |      |

PQL = Practical Quantitation Limit

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By:

Mark J. Johnson

**Operations Manager** 

Date: 6-14-07

The cover letter is an integral part of this analytical report.

N 100407

- AirTECHNOLOGY Laboratories, Inc. -

| SDG #<br>.abora   | t: IQF0211/A7060503<br>atory: <u>Test America/Air Te</u>                     | <br>chnol | ogy Labor | atory, Inc.                      | Tier 1      | ESS WORK                           | SHEET              | Date: 9/2 Page: /of/ Reviewer: 72 2nd Reviewer: 12 |
|-------------------|------------------------------------------------------------------------------|-----------|-----------|----------------------------------|-------------|------------------------------------|--------------------|----------------------------------------------------|
| he sa             | IOD: GC Dissolved Gases amples listed below were retion findings worksheets. | •         |           | ,                                | ollowing v  | alidation areas                    | . Validation findi | ngs are noted in attache                           |
|                   | Validation A                                                                 | rea       |           |                                  |             |                                    | Comments           |                                                    |
| I.                | Technical holding times                                                      |           |           | ٨                                | Sampling of | lates: 6                           | 14/07              |                                                    |
| lla.              | Initial calibration                                                          |           |           | N                                |             | /                                  | 7                  |                                                    |
| IIb.              | Calibration verification                                                     |           |           | N                                |             |                                    |                    |                                                    |
| III.              | Blanks                                                                       |           |           | Δ                                |             |                                    |                    |                                                    |
| IVa.              | Surrogate recovery                                                           |           |           | N                                | not         | reguue                             | 2                  |                                                    |
| IVb.              | Matrix spike/Matrix spike dupli                                              | cates     |           | N                                | cl          | ient up                            | enjeil             |                                                    |
| IVc.              | Laboratory control samples                                                   |           |           | A                                | u           | 510                                | _/                 |                                                    |
| V.                | Target compound identification                                               | 1         |           | N                                |             |                                    |                    |                                                    |
| VI.               | Compound Quantitation and C                                                  | RQLs      |           | N                                |             |                                    |                    |                                                    |
| VII.              | System Performance                                                           |           |           | N                                |             |                                    |                    |                                                    |
| VIII.             | Overall assessment of data                                                   |           |           | A                                |             |                                    |                    |                                                    |
| iX.               | Field duplicates                                                             |           |           | N                                |             |                                    |                    |                                                    |
| Χ.                | Field blanks                                                                 |           |           | $\sim$                           |             |                                    |                    |                                                    |
| lote:<br>'alidate | A = Acceptable N = Not provided/applicable SW = See worksheet ad Samples:    |           | R = Rins  | o compounds<br>sate<br>eld blank | s detected  | D = Dupli<br>TB = Trip<br>EB = Equ |                    |                                                    |
| - 1               | IRZMW001A_WG060407_0001                                                      | 11        | MB-       | 6/13/07                          | , 21        |                                    | 31                 |                                                    |
| 2                 |                                                                              | 12        |           | ,                                | 22          |                                    | 32                 |                                                    |
| 3                 |                                                                              | 13        |           |                                  | 23          |                                    | 33                 |                                                    |
| 4                 |                                                                              | 14        |           |                                  | 24          |                                    | 34                 |                                                    |
| 5                 |                                                                              | 15        |           |                                  | 25          |                                    | 35                 |                                                    |
| 6                 |                                                                              | 16        |           |                                  | 26          |                                    | 36                 |                                                    |
| 7                 |                                                                              | 17        |           |                                  | 27          |                                    | 37                 |                                                    |
| 8                 |                                                                              | 18        |           |                                  | 28          |                                    | 38                 |                                                    |
| 9                 |                                                                              | 19        |           |                                  | 29          |                                    | 39                 |                                                    |
| 10                |                                                                              | 20        |           |                                  | 30          |                                    | 40                 |                                                    |
| lotes             |                                                                              |           |           |                                  |             |                                    |                    |                                                    |

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 5, 2007

LDC Report Date:

October 5, 2007

Matrix:

Water

Parameters:

Dissolved Gases

Validation Level:

Tier 2

Laboratory:

Test America/Air Technology Laboratories, Inc.

Sample Delivery Group (SDG): IQF0296/A7060601

Sample Identification

IRZMW004\_WG060507\_0001

### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per Method RSK-175 for Dissolved Gases.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination  $(r^2)$  was greater than or equal to 0.990.

### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 25.0% QC limits.

### III. Blanks

Method blanks were performed at the required frequency. No dissolved gas contaminants were found in the method blanks.

### IV. Accuracy and Precision Data

### a. Surrogate Recovery

Not required by the method.

### b. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### c. Laboratory Control Samples

Laboratory control samples were analyzed at the required frequency. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### V. Target Compound Identification

Raw data were not reviewed for this SDG.

### VI. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

### VII. System Performance

Raw data were not reviewed for this SDG.

### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### IX. Field Duplicates

No field duplicates were identified in this SDG.

### X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility Dissolved Gases - Data Qualification Summary - SDG IQF0296/A7060601

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Dissolved Gases - Laboratory Blank Data Qualification Summary - SDG IQF0296/A7060601

No Sample Data Qualified in this SDG

Client: TestAmerica
Attn: Nicholas Marz

Page 2 of 3 A7060601

Client's Project:

IQF0296

Date Received:

6/6/2007

Matrix: Water Units: ug/L

|            |           |      |          |       | EPA Proce            | dure R | SKSOP- | 175 | <br> |  |
|------------|-----------|------|----------|-------|----------------------|--------|--------|-----|------|--|
|            | IR        | MWO  | 04_WG1   | 16050 | 7-000                |        |        |     |      |  |
| I          | ab No.:   | A706 | 0601-01  | A70   | 606 <del>01-02</del> |        |        |     |      |  |
| Client Sam | ple I.D.: | IQF  | 0296-01  | IQI   | 70296-0A             |        |        |     |      |  |
| Date S     | ampled:   | 6/5  | 5/2007   | 6/    | 5/2007               |        |        |     |      |  |
| Date A     | nalyzed:  | 6/1  | 3/2007   | 6/1   | 13/2/007             |        |        |     |      |  |
| Analyst    | Initials: |      | DT_      |       | D/T                  |        |        |     |      |  |
| Data File: |           | 13   | 13jun015 |       | 3jan016              |        |        |     |      |  |
| QC         | Batch:    | 0706 | 13GC8A1  | 0700  | 13GC8A1              |        |        |     |      |  |
| Dilution   | Factor:   |      | 1.0      |       | 1.0                  |        |        |     |      |  |
| ANALYTE    | PQL       | RL   | Results  | RI    | Results              |        |        |     |      |  |
| Methane    | 1.0       | 1.0  | 1,500    | 1/.0  | 33                   |        |        |     |      |  |
| Ethane     | 2.0       | 2.0  | ND       | /2.0  | ND                   |        |        |     |      |  |
| Ethylene   | 3.0       | 3.0  | ND       | 30-   | ND                   |        |        |     |      |  |

PQL = Practical Quantitation Limit

ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

Reviewed/Approved By

Mark J. Johnson

**Operations Manager** 

Date: 6-19-07

The cover letter is an integral part of this analytical report.

Mody

AIRTECHNOLOGY Laboratories, Inc. -

| SDG #<br>_abora<br><b>METH</b>  | : 17471B51<br>t: IQF0296/4766660<br>atory: Test America/Air To<br>OD: GC Dissolved Gase | echno   | ology Lab | oratory, Inc.<br><-175)               | Tier 2      |         | S WORKSHEET                                              | Date:/26<br>Page:/of<br>Reviewer:/<br>2nd Reviewer:/\(\frac{1}{2}\) |
|---------------------------------|-----------------------------------------------------------------------------------------|---------|-----------|---------------------------------------|-------------|---------|----------------------------------------------------------|---------------------------------------------------------------------|
|                                 | amples listed below were ion findings worksheets.                                       | revie   | wed for e | ach of the fo                         | ollowing v  | alida   | ation areas. Validation find                             | lings are noted in attache                                          |
|                                 | Validation                                                                              | Area    |           |                                       |             |         | Comments                                                 |                                                                     |
| I.                              | Technical holding times                                                                 |         |           |                                       | Sampling of | lates   | : 6/5/07                                                 |                                                                     |
| IIa.                            | Initial calibration                                                                     |         |           | A                                     | 1-2         | 0.5     | 790                                                      |                                                                     |
| llb.                            | Calibration verification                                                                |         |           | <u>A</u>                              | · % D       | <u></u> | X                                                        |                                                                     |
| III.                            | Blanks                                                                                  |         |           | A                                     | ļ           |         |                                                          |                                                                     |
| IVa.                            | Surrogate recovery                                                                      |         |           | $\mathcal{N}$                         | Not         |         | Recuired                                                 |                                                                     |
| IVb.                            | Matrix spike/Matrix spike dup                                                           | licates | 3         | /                                     | clie        | vt      | specified                                                |                                                                     |
| IVc.                            | Laboratory control samples                                                              |         |           | A                                     | LCS/        | 2       | , v                                                      |                                                                     |
| V.                              | Target compound identification                                                          | on      |           | N                                     |             |         |                                                          |                                                                     |
| VI.                             | Compound Quantitation and                                                               | CRQL    | s         | N                                     |             |         |                                                          |                                                                     |
| VII.                            | System Performance                                                                      |         |           | N                                     |             |         |                                                          |                                                                     |
| VIII.                           | Overall assessment of data                                                              |         |           | Δ                                     |             |         |                                                          |                                                                     |
| IX.                             | Field duplicates                                                                        |         |           | N                                     |             |         |                                                          |                                                                     |
| X.                              | Field blanks                                                                            |         |           | $\mathcal{N}$                         |             |         |                                                          |                                                                     |
| Note:                           | A = Acceptable N = Not provided/applicable SW = See worksheet                           |         | R = R     | No compounds<br>insate<br>Field blank | s detected  |         | D = Duplicate<br>TB = Trip blank<br>EB = Equipment blank |                                                                     |
|                                 | Waler                                                                                   |         |           |                                       |             |         |                                                          |                                                                     |
| 1 1                             | RZMW004_WG060507_0001                                                                   | 11      | MB-       | 6/13/07                               | 21          | L       | 31                                                       |                                                                     |
| 2                               |                                                                                         | 12      |           |                                       | 22          |         | 32                                                       |                                                                     |
| 3                               |                                                                                         | 13      |           |                                       | 23          |         | 33                                                       |                                                                     |
| 4                               |                                                                                         | 14      |           |                                       | 24          |         | 34                                                       |                                                                     |
| 5                               |                                                                                         | 15      |           |                                       | 25          |         | 35                                                       |                                                                     |
| 6                               |                                                                                         | 16      |           |                                       | 26          |         | 36                                                       |                                                                     |
| 7                               |                                                                                         | 17      |           |                                       | 27          |         | 37                                                       |                                                                     |
| 2<br>3<br>4<br>5<br>6<br>7<br>8 |                                                                                         | 18      |           |                                       | 28          |         | 38                                                       |                                                                     |
| 9                               |                                                                                         | 19      |           |                                       | 29          |         | 39                                                       |                                                                     |

| Notes: |  |  |  |
|--------|--|--|--|
|        |  |  |  |

20

# Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

Boeing Realty Corp., Bldg C-6 Facility

**Collection Date:** 

June 7, 2007

LDC Report Date:

October 5, 2007

Matrix:

Water

Parameters:

Dissolved Gases

Validation Level:

Tier 3

Laboratory:

Test America/Air Technology Laboratories, Inc.

Sample Delivery Group (SDG): IQF0673/A7060801

Sample Identification

IRZMW002B\_WG060707\_0001

### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per Method RSK-175 for Dissolved Gases.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. Calibration

### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination  $(r^2)$  was greater than or equal to 0.990.

### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 25.0% QC limits.

### III. Blanks

Method blanks were reviewed for each matrix as applicable. No dissolved gas contaminants were found in the method blanks.

### IV. Accuracy and Precision Data

### a. Surrogate Recovery

Surrogates were not required by the method.

### b. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### V. Target Compound Identification

All target compound identifications were within validation criteria.

### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

### VII. System Performance

The system performance was acceptable.

### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### IX. Field Duplicates

No field duplicates were identified in this SDG.

### X. Field Blanks

No field blanks were identified in this SDG.

Boeing Realty Corp., Bldg C-6 Facility
Dissolved Gases - Data Qualification Summary - SDG IQF0673/A7060801

No Sample Data Qualified in this SDG

Boeing Realty Corp., Bldg C-6 Facility Dissolved Gases - Laboratory Blank Data Qualification Summary - SDG IQF0673/A7060801

No Sample Data Qualified in this SDG

Client: Attn: TestAmerica Nicholas Marz

Client's Project:

IQF0673

Date Received:

6/8/2007

Matrix: Water Units: ug/L

|            |           |       |         |                   | EPA Proce | dure R | SKSOP-17 | /5       |         |             |         |
|------------|-----------|-------|---------|-------------------|-----------|--------|----------|----------|---------|-------------|---------|
|            | RZ        | MWOO  | JB-WG   | 06670             | 7_000     |        |          |          |         |             |         |
| I          | ab No.:   | A706  | 0801-01 | A706              | 0801-02   | _A706  | 0801-03  | A706     | 0801-04 | A706        | 0801-05 |
| Client Sam | ple I.D.: | IQF   | 0673-01 | IQF               | 0673-02   | IQF    | 0673-03  | IQF      | 0673-04 | IQE         | 673-07  |
| Date S     | ampled:   | 6/7   | /2007   | 6/7               | 7/2007    | 6/7    | /2007    | 6/7/2007 |         | 6/7         | /2007   |
| Date Aı    | alyzed:   | 6/13  | 8/2007  | 6/1               | 8/2007    | 6/1    | 3/2007   | 6/1      | 3/2007  | 6/1         | 3/2007  |
| Analyst    | Initials: |       | DT      |                   | DT        |        | DT       |          | рŢ      |             | DT      |
| D:         | ata File: | 18    | jun01 l | 18                | jun012    | 18     | un013    | 18       | jun014  | 18          | un015   |
| QQ         | Batch:    | 07061 | 8GC8A1  | 0706              | 18GC8AI   | 07061  | 8GC8A1   | 07061    | 8GC8A1  | 070618GC8A1 |         |
| Dilution   | Factor:   |       | 1.0     |                   | 1.0       |        | 1.0      |          | 1.0     |             | 1.0     |
| ANALYTE    | PQL       | RL    | Results | RL                | Results   | RL     | Results  | RL       | Results | RL          | Results |
| Methane    | 1.0       | 1.0   | 3,100   | 1.0               | 6,700     | 1.0    | 6,600    | 1.0      | 17,000  | 1.0         | 11,000  |
| Ethane     | 2.0       | 2.0   | ND      | 2.0               | dx        | 2.0    | ND       | 2.0      | ND      | 2.0         | ND      |
| Ethylene   | 3.0       | 3.0   | ND      | 3.0               | 27        | 3.0    | 10       | 3.0      | 27      | 3.0         | ND      |
| Nitrogen   | 1,500     | 1,500 | 83,000  | 1,5 <del>60</del> | 74,000    | 1,500  | 81,000   | 1,500    | 55,000  | 1,500       | 80,000  |

PQL = Practical Quantitation Limit ND = Not Detected (Below RL)

RL = PQL X Dilution Factor

| Naviawed/ | A nnrave | d Rv. |
|-----------|----------|-------|

Mark J. Johnson

Operations Manager

Date: 6/2/07

The cover letter is an integral part of this analytical report.

K 10040

AirTECHNOLOGY Laboratories, Inc.

| SDG<br>Labor<br><b>MET</b> I<br>The s | #:17471C51 #:IQF0673/A7060801 ratory:_Test America/Air Te HOD: GC Dissolved Gases samples listed below were ration findings worksheets. | chno<br>(Me | thod RSK                     | orator<br>(-175 | <u>y, Inc.</u><br>) | Tier     | 3               |     |                 |                            |     |       | 2nd R | eview | er: | W | , <i>/o7</i><br><del>-</del><br>- |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|-----------------|---------------------|----------|-----------------|-----|-----------------|----------------------------|-----|-------|-------|-------|-----|---|-----------------------------------|
|                                       | Validation A                                                                                                                            | rea         |                              |                 |                     |          |                 |     |                 |                            | Com | ments |       |       |     |   |                                   |
| I.                                    | Technical holding times                                                                                                                 |             |                              |                 | 1                   | Sampl    | ing date        | s:  | 6               | 107                        |     |       |       |       |     |   |                                   |
| IIa.                                  | Initial calibration                                                                                                                     |             |                              |                 | Δ                   |          | 127             |     |                 |                            |     | 1     | <br>  |       |     |   |                                   |
| IIb.                                  | Calibration verification                                                                                                                |             |                              |                 | A                   | 1/0      | 050             |     |                 |                            |     |       |       |       |     |   | Office and the second             |
| 111.                                  | Blanks                                                                                                                                  |             |                              | _               | Δ                   |          |                 |     |                 |                            |     |       |       |       |     |   |                                   |
| IVa.                                  | Surrogate recovery                                                                                                                      |             |                              |                 | N                   | ni       | o <del> -</del> | Re. | gu.             | ئىي                        | 9   |       |       | •     |     |   |                                   |
| IVb.                                  | Matrix spike/Matrix spike dupli                                                                                                         | cates       |                              |                 | N                   | ι        | heit            |     | V <sub>S1</sub> | re i                       | lie | J     |       |       |     |   |                                   |
| IVc.                                  | Laboratory control samples                                                                                                              |             |                              |                 | A                   | u        | : 5 lc          | 2   | 7               |                            | )   |       |       |       |     |   |                                   |
| <u>V.</u>                             | Target compound identification                                                                                                          | 1           |                              |                 | Δ                   |          |                 |     |                 |                            |     |       |       |       |     |   |                                   |
| VI.                                   | Compound Quantitation and C                                                                                                             | RQLs        |                              |                 | A                   |          |                 |     |                 |                            |     |       |       |       |     |   |                                   |
| VII.                                  | System Performance                                                                                                                      |             |                              |                 | 4                   |          |                 |     |                 |                            |     |       |       |       |     |   |                                   |
| VIII.                                 | Overall assessment of data                                                                                                              |             |                              |                 | A                   |          |                 |     |                 |                            |     |       | <br>  |       |     |   |                                   |
| IX.                                   | Field duplicates                                                                                                                        |             |                              |                 | N                   |          |                 |     |                 |                            |     |       |       |       |     |   |                                   |
| <u> x.</u>                            | Field blanks                                                                                                                            |             |                              |                 | $\sim$              |          |                 | ··· |                 |                            |     |       | <br>  |       |     |   |                                   |
| Note:<br>√alidat                      | A = Acceptable N = Not provided/applicable SW = See worksheet  sed Samples:                                                             |             | ND = N<br>R = Rir<br>FB = Fi | nsate           | npounds<br>ank      | s detect | ed              | TB  | 3 = Tr          | olicate<br>ip bla<br>quipm |     | ank   |       |       |     |   | -                                 |
| 1                                     | IRZMW002B_WG060707_0001                                                                                                                 | 11          | MB-                          | 6               | 18 07               | ,        | 21              |     |                 |                            |     | 31    |       |       |     |   |                                   |
| 2                                     |                                                                                                                                         | 12          |                              |                 | •                   |          | 22              |     |                 |                            |     | 32    |       |       |     |   |                                   |
| 3                                     |                                                                                                                                         | 13          |                              |                 |                     |          | 23              |     |                 |                            |     | 33    |       |       |     |   |                                   |
| 4                                     |                                                                                                                                         | 14          |                              |                 |                     |          | 24              |     |                 |                            |     | 34    |       |       |     |   |                                   |
| 5                                     |                                                                                                                                         | 15          |                              |                 |                     |          | 25              |     |                 |                            |     | 35    |       |       |     |   |                                   |
| 6                                     |                                                                                                                                         | 16          |                              |                 |                     |          | 26              |     |                 |                            |     | 36    |       |       |     |   |                                   |
| 7                                     |                                                                                                                                         | 17          |                              |                 |                     |          | 27              |     |                 |                            |     | 37    |       |       |     |   |                                   |
| 8                                     |                                                                                                                                         | 18          |                              |                 | • • • •             |          | 28              |     |                 |                            |     | 38    |       |       |     |   |                                   |
| 9                                     |                                                                                                                                         | 19          |                              | ,               |                     |          | 29              |     |                 |                            |     | 39    | <br>  |       |     |   |                                   |
| 10                                    |                                                                                                                                         | 20          |                              |                 |                     |          | 30              |     |                 |                            |     | 40    |       |       |     |   |                                   |

Notes:\_\_

LDC #: 747(5) SDG #: per coner

### **VALIDATION FINDINGS CHECKLIST**

Page: /of //
Reviewer: //
2nd Reviewer: //

|         | •  |      |
|---------|----|------|
| Method: | GC | HPLC |

| Method: GC HPLC                                                                                                                                                                |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Validation Area                                                                                                                                                                | Yes          | No       | NA | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I. Technical holding times                                                                                                                                                     | T            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All technical holding times were met.                                                                                                                                          | /            | <u> </u> |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooler temperature criteria was met.                                                                                                                                           |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| III. Initial calibration                                                                                                                                                       |              | 1        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the laboratory perform a 5 point calibration prior to sample analysis?                                                                                                     | /            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) ≤ 20%?                                                                      |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?                                                                                            | /            | -        |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Did the initial calibration meet the curve fit acceptance criteria?                                                                                                            | /            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the RT windows properly established?                                                                                                                                      |              |          |    | AND SIAMON OF THE STATE OF THE SIAMON OF THE STATE OF THE |
| IV. Continuing calibration                                                                                                                                                     |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| What type of continuing calibration calculation was performed?%D or%R                                                                                                          |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a continuing calibration analyzed daily?                                                                                                                                   | /            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all percent differences (%D) < 15%.0 or percent recoveries 85-115%?                                                                                                       |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all the retention times within the acceptance windows?                                                                                                                    |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V Blanks                                                                                                                                                                       |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank associated with every sample in this SDG?                                                                                                                   |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was a method blank analyzed for each matrix and concentration?                                                                                                                 |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.                                                                 |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VI Surrogate spikes                                                                                                                                                            |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were all surrogate %R within the QC limits?                                                                                                                                    |              |          | 4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?                                                        |              |          | 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If any %R was less than 10 percent, was a reanalysis performed to confirm %R?                                                                                                  |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VII. Matrix spike/Matrix spike duplicates                                                                                                                                      |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD, Soil / Water. |              |          |    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Was a MS/MSD analyzed every 20 samples of each matrix?                                                                                                                         |              |          |    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?                                                                       |              |          | }  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VIII. Laboratory control samples                                                                                                                                               | <del>-</del> |          | Т  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was an LCS analyzed for this SDG?                                                                                                                                              | 4            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Was an LCS analyzed per extraction batch?                                                                                                                                      | 1            |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?                                                                               |              |          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

LDC #: 1747C5] SDG #: su cover

### **VALIDATION FINDINGS CHECKLIST**

Page: 2 of 2
Reviewer: 7
2nd Reviewer: 4

| Validation Area                                                                                                                         | Yes     | No    | NA  | Findings/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IX. Regional Quality Assurance and Quality Control                                                                                      |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were performance evaluation (PE) samples performed?                                                                                     |         |       | <   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the performance evaluation (PE) samples within the acceptance limits?                                                              |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X Target compound identification                                                                                                        |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were the retention times of reported detects within the RT windows?                                                                     | $\perp$ |       |     | 20 September 2015 Sep |
| XI Compound quantitation/CRQLs                                                                                                          | _       | is in |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XII. System performance                                                                                                                 | 1 11    |       |     | And the second s |
| System performance was found to be acceptable.                                                                                          |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIII Overall assessment of data                                                                                                         |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Overall assessment of data was found to be acceptable.                                                                                  |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XIV Field duplicates                                                                                                                    |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field duplicate pairs were identified in this SDG.                                                                                      |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target compounds were detected in the field duplicates.                                                                                 |         |       |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XV. Field blanks                                                                                                                        |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field blanks were identified in this SDG.                                                                                               |         |       | - ] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Target compounds were detected in the field blanks.                                                                                     |         |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SDC# 17471CS

Initial Calibration Calculation Verification **VALIDATION FINDINGS WORKSHEET** 

\_ of \_

Page:

RSK-175 METHOD:

methane Parameter:

methane

| X^2      |            |           |           |            |             |  |  |  |
|----------|------------|-----------|-----------|------------|-------------|--|--|--|
| *        | 2109.000   | 11501.000 | 25221.000 | 261792.000 | 1299049.000 |  |  |  |
| ×        | 1000.000   | 5000.000  | 10000.000 | 100000.000 | 5.00E+005   |  |  |  |
| Compound | methane    |           |           |            |             |  |  |  |
| Column   | front-TCD  |           |           |            |             |  |  |  |
| Date     | 05/15/2007 |           |           |            |             |  |  |  |

| Regression Output:  | Regression Output: | Reported |             |
|---------------------|--------------------|----------|-------------|
| Constant            | 0.0000             |          | 0.00E+000   |
| Std Err of Y Est    | 1307.30515         |          |             |
| R Squared           | 0.99999            |          | 1.0000E+000 |
| No. of Observations | 5.00000            |          |             |
| Degrees of Freedom  | 4.00000            |          |             |
| X Coefficient(s)    | 2.599E+000         |          | 2.599E+000  |
| Std Err of Coef.    | 0.002563           |          |             |
|                     |                    |          |             |

LDC#: 17471 cs SDG#:

# Continuing Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: Reviewer: 2nd Reviewer:

> HPLC METHOD: GC\_

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 \* (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF CF = continuing calibration CF

A = Area of compound C = Concentration of compound

| $\  \cdot \ $ |             |                     |          |                   |          |              |          |             |
|---------------|-------------|---------------------|----------|-------------------|----------|--------------|----------|-------------|
|               |             |                     |          |                   | Reported | Recalculated | Reported | Donalminton |
| #             | Standard ID | Calibration<br>Date | Compound | Average CF(Ical)/ | CF/Conc. | CF/Conc.     | Q%       | Q%          |
| -             | ced         | 10/81/9             | methane  | 100001            | 10822    | V22          | ٠ / ١٠   | 9 9         |
|               | 8:53AM      |                     |          |                   |          | 11001        | 8.1      | 8.7         |
|               |             |                     |          |                   |          |              |          |             |
| ╟             |             |                     |          |                   |          |              |          |             |
| 2             |             |                     |          |                   |          |              |          |             |
|               |             |                     |          |                   |          |              |          |             |
| T             |             |                     |          |                   |          |              |          |             |
| 1             |             |                     |          |                   |          |              |          |             |
| 3             |             |                     |          |                   |          |              |          |             |
|               |             |                     |          |                   |          |              |          |             |
| †             |             |                     |          |                   |          |              |          |             |
| ╫             |             |                     |          |                   |          |              | ·        |             |
| 4             |             |                     |          |                   |          |              |          |             |
|               |             |                     |          |                   |          |              |          |             |
|               |             | -                   |          |                   |          |              |          |             |
| $\dashv$      |             |                     |          |                   |          |              |          |             |
|               |             |                     |          | 1                 |          |              |          |             |

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

CONCLC.1S

LDC#: (7471ex SDG #: Lu conor

# Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification VALIDATION FINDINGS WORKSHEET

Reviewer:\_ Page: 2nd Reviewer:\_

> GC HPLC METHOD:

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100\* (SSC-SC)/SA RPD = 1 LCS - LCSD 1 \* 2/(LCS + LCSD)

LCSD = Laboratory control sample duplicate percent recovery

SC = Concentration

LCS/LCSD samples:\_

Where: SSC = Spiked sample concentration SA = Spike added LCS = Laboratory control sample percent recovery

| ,                            | . ω ∢ | Spike<br>Added | Spiked | Spiked Sample<br>Concentration | רנ       | SOT              | רכ       | CCSD             | TCS     | TCS/FCSD |
|------------------------------|-------|----------------|--------|--------------------------------|----------|------------------|----------|------------------|---------|----------|
| Compound                     | 7     | pml)           | me0)   | 2m~)                           | Percent  | Percent Recovery | Percent  | Percent Recovery |         |          |
|                              | CSJ   | LCSD           | rcs    | GSOT                           | Reported | Recalc           | Reported | Bood             |         | - L      |
| Gasoline (8015)              |       |                |        |                                |          |                  |          | Necalc.          | керопед | Kecalc.  |
| Diesel (8015)                |       |                |        |                                |          |                  |          |                  |         |          |
| Benzene (8021B)              |       |                |        |                                |          |                  |          |                  |         |          |
| Methane (RSK-175)            | 7600  | 7001           | 2000   | 1.951.2                        | 0        | 2                | 8        |                  |         |          |
| 2,4-D (8151)                 |       |                |        | 0                              | a        | 18               | 7-       | 78               | 9.9     | 2-6      |
| Dinoseb (8151)               |       |                |        |                                |          |                  |          |                  |         |          |
| Naphthalene (8310)           |       |                |        |                                |          |                  |          |                  |         |          |
| Anthracene (8310)            |       |                |        |                                |          |                  |          |                  |         |          |
| HMX (8330)                   |       |                |        |                                |          |                  |          |                  |         |          |
| 2,4,6-Trinitrotoluene (8330) |       |                |        |                                |          |                  |          |                  |         |          |
|                              |       |                | -      |                                |          |                  | -        |                  |         | -        |
|                              |       |                |        |                                |          |                  |          |                  |         |          |
|                              |       |                |        |                                |          |                  |          | =                |         |          |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC # (147]cs ) SDG #: 10 cond

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Reviewer: 2nd Reviewer: Page:

HPLC

ပ္ပ METHOD: Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results?

Y N N Y

Concentration=

Example: (RF)(Vs or Ws)(%S/100)

Area or height of the compound to be measured Final Volume of extract A: F∨:

Df= Dilution Factor

RF= Average response factor of the compound In the initial calibration

Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solld

Concentration =

Compound Name Methane

Sample ID.

y= 2.59 88 (x)

0x5.11/820 = X 85530= 2.5988 (x)

0.0329/340 - nwad

| # | Sample ID   | Compound        | Reported<br>Concentrations | Recalculated Results<br>Concentrations | Qualifications |
|---|-------------|-----------------|----------------------------|----------------------------------------|----------------|
|   | SH 000 7/5m | 5 0.0329134D (  | 5.51) (16,04) (100         | T360L0 = (                             |                |
|   | 0           |                 | /II                        |                                        |                |
|   |             |                 |                            |                                        |                |
|   | gas in ligh | mi) = 0,0329134 | 340 (16.04) (4) x /2       | 100 - 29/678                           | ZF.            |
|   | <i>n</i>    |                 | 22.4)(36) 20               |                                        |                |
|   |             |                 |                            |                                        |                |
|   |             |                 | Tota/=                     | 3.108x85 mg/L                          |                |
|   |             |                 | g)                         | 3/09 ug/                               |                |

Comments:

SAMPCALew.wpd